1
|
Zhu Y, Kang Y, Su J, Wen Z, Li M, Zhu Q, Zhai Y, Kang J, Li Y, Wang L. Mechanochemical Synthesis of Phase-Pure CsCu 2I 3 and Cs 3Cu 2I 5 Phosphors Regulated by Polar Solvents and Their Application in Tunable Chromaticity LEDs. Inorg Chem 2025; 64:1569-1578. [PMID: 39792595 DOI: 10.1021/acs.inorgchem.4c05039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Lead halide perovskites have garnered interest in light-emitting diode (LED) applications due to their strong emission and tunable properties. However, conventional synthesis methods involve energy-intensive thermal processes and hazardous organic solvents, raising environmental concerns. In this study, we report a simple and eco-friendly mechanochemical approach that produces phase-pure blue-emitting Cs3Cu2I5 (emission at 440 nm) and yellow-emitting CsCu2I3 (emission at 570 nm) phosphors through polarity modulation and control of grinding duration. Our comprehensive analysis of the phase transitions during mechanochemical synthesis reveals that pure Cs3Cu2I5 was synthesized from a 3:2 precursor molar ratio in ethanol for 30 min, while pure CsCu2I3 was obtained from a 1:2 precursor molar ratio in an aqueous solution for 7.5 min. Moreover, Raman spectroscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy analyses confirmed that phase-pure phosphors were achieved through these methods. Finally, we fabricated a series of color-adjustable LEDs by mixing Cs3Cu2I5 and CsCu2I3 phosphors in different proportions. This demonstrates the potential of our mechanochemical synthesis for the efficient, large-scale production of next-generation lighting materials with tunable emission.
Collapse
Affiliation(s)
- Yichen Zhu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China
| | - Yubin Kang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China
| | - Jing Su
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China
| | - Zhi Wen
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China
| | - Mingchun Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China
| | - Qiangqiang Zhu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China
| | - Yue Zhai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China
| | - Juan Kang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China
| | - Yanghui Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China
| | - Le Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China
| |
Collapse
|
2
|
Ferreira RAS, Correia SFH, Georgieva P, Fu L, Antunes M, André PS. A comprehensive dataset of photonic features on spectral converters for energy harvesting. Sci Data 2024; 11:50. [PMID: 38191564 PMCID: PMC10774306 DOI: 10.1038/s41597-023-02827-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Building integrated photovoltaics is a promising strategy for solar technology, in which luminescent solar concentrators (LSCs) stand out. Challenges include the development of materials for sunlight harvesting and conversion, which is an iterative optimization process with several steps: synthesis, processing, and structural and optical characterizations before considering the energy generation figures of merit that requires a prototype fabrication. Thus, simulation models provide a valuable, cost-effective, and time-efficient alternative to experimental implementations, enabling researchers to gain valuable insights for informed decisions. We conducted a literature review on LSCs over the past 47 years from the Web of ScienceTM Core Collection, including published research conducted by our research group, to gather the optical features and identify the material classes that contribute to the performance. The dataset can be further expanded systematically offering a valuable resource for decision-making tools for device design without extensive experimental measurements.
Collapse
Affiliation(s)
- Rute A S Ferreira
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Sandra F H Correia
- Instituto de Telecomunicações, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Petia Georgieva
- Instituto de Telecomunicações, University of Aveiro, 3810-193, Aveiro, Portugal
- Departament of Electronics, Telecommunications and Informatics, Institute of Electronics and Informatics Engineering of Aveiro (IEETA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lianshe Fu
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mário Antunes
- Instituto de Telecomunicações, University of Aveiro, 3810-193, Aveiro, Portugal
- Departament of Electronics, Telecommunications and Informatics, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paulo S André
- Department of Electrical and Computer Engineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
| |
Collapse
|
3
|
Ma Z, Ji X, Lin S, Chen X, Wu D, Li X, Zhang Y, Shan C, Shi Z, Fang X. Recent Advances and Opportunities of Eco-Friendly Ternary Copper Halides: A New Superstar in Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300731. [PMID: 36854310 DOI: 10.1002/adma.202300731] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Recently, the newly-emerging lead-free metal-halide materials with less toxicity and superior optoelectronic properties have received wide attention as the safer and potentially more robust alternatives to lead-based perovskite counterparts. Among them, ternary copper halides (TCHs) have become a vital group due to their unique features, including abundant structural diversity, ease of synthesis, unprecedented optoelectronic properties, high abundance, and low cost. Although the recent efforts in this field have made certain progresses, some scientific and technological issues still remain unresolved. Herein, a comprehensive and up-to-date overview of recent progress on the fundamental characteristics of TCH materials and their versatile applications is presented, which contains topics such as: i) crystal and electronic structure features and synthesis strategies; ii) mechanisms of self-trapped excitons, luminescence regulation, and environmental stability; and iii) their burgeoning optoelectronic devices of phosphor-converted white light-emitting diodes (WLEDs), electroluminescent LEDs, anti-counterfeiting, X-ray scintillators, photodetectors, sensors, and memristors. Finally, the current challenges together with future perspectives on the development of TCH materials and applications are also critically described, which is considered to be critical for accelerating the commercialization of these rapidly evolving technologies.
Collapse
Affiliation(s)
- Zhuangzhuang Ma
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Xinzhen Ji
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Shuailing Lin
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Xu Chen
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Di Wu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Xinjian Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Yu Zhang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Chongxin Shan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, Institute of Optoelectronics, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|