1
|
Ma S, Lam Y, Shi L, Yang J, Wang K, Yu B, Kan C, Fei B, Xin JH, Ma K, Stoddart JF, Chen Z. Tetrathienylethene-based porous framework composites for boosting photocatalytic antibacterial activity. Proc Natl Acad Sci U S A 2025; 122:e2423052122. [PMID: 40193605 PMCID: PMC12012459 DOI: 10.1073/pnas.2423052122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
In order to reduce the risk of high-threat pathogens, a photocatalytic antibacterial method with a reputation for high efficiency and sustainability has attracted widespread attention. Recently, metal-organic frameworks (MOFs) have emerged as desirable platforms for photocatalytic applications by virtue of their structural diversity and functional adjustability. Herein, we report that we have synthesized a stable and photosensitive zirconium-based MOF (Zr-MOF) with a photoactive tetrathienylethene-based organic linker, Zr-TSS-1. Compared with all-carbocyclic Zr-MOF counterparts, Zr-TSS-1 shows a substantial improvement in visible-light harvesting and free-carrier generation, enabling it to be a promising candidate for photocatalytic antibacterial applications. In order to validate the advantages of this framework as an antibacterial protective material, a composite was fabricated by incorporating robust Zr-TSS-1 onto sustainably accessible bacterial cellulose (BC) using an in situ growth method. This composite exhibits near-complete lethality toward typical Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus within 1 h under mild irradiation and preserves outstanding antibacterial capability after five cycles of reutilization. In addition, the high biocompatibility is confirmed by the low cytotoxicity toward human skin fibroblast, suggesting its potential for biomedical and healthcare applications. This research demonstrates the efficacious integration of a purposely designed photosensitive porous framework onto a sustainable substrate for synergistic functionality, paving a practical way for the development of the next-generation high-efficiency antimicrobial technology.
Collapse
Affiliation(s)
- Si Ma
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311215, P. R. China
| | - Yintung Lam
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Special Administrative Region of China
| | - Le Shi
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311215, P. R. China
| | - Jian Yang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311215, P. R. China
| | - Kun Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311215, P. R. China
| | - Bo Yu
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Special Administrative Region of China
| | - Chiwai Kan
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Special Administrative Region of China
| | - Bin Fei
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Special Administrative Region of China
| | - John H. Xin
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Special Administrative Region of China
| | - Kaikai Ma
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Special Administrative Region of China
| | - J. Fraser Stoddart
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311215, P. R. China
- Department of Chemistry, The University of Hong Kong, Hong Kong Island, Hong Kong, Special Administrative Region, P. R. China
- Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL60208
- Center for Regenerative Nanomedicine, Northwestern University, Chicago, IL60611
- School of Chemistry, University of New South Wales, Sydney, NSW2052, Australia
| | - Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311215, P. R. China
| |
Collapse
|
2
|
Han Z, Yang Y, Rushlow J, Liang RR, Zhou HC. Sequential Linker Installation in Metal-Organic Frameworks. Acc Chem Res 2024; 57:3217-3226. [PMID: 39414398 PMCID: PMC11542145 DOI: 10.1021/acs.accounts.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
ConspectusMetal-organic frameworks (MOFs) represent a sophisticated blend of inorganic and organic components, promoting the development of coordination chemistry greatly and offering a versatile platform for tailored functionalities. By combining various metal nodes, organic linkers, and functional guests, MOFs provide numerous pathways for their design, synthesis, and customization. Among these, sequential linker installation (SLI) stands out as a novel and crucial strategy, enabling the precise integration of desired properties and functions at the atomic scale. SLI enhances structural diversity and stability while facilitating the meticulous construction of robust frameworks by leveraging open metal sites and functional organic linkers at targeted locations. Compared to the direct synthesis of MOFs, postsynthetic modification methods allow for precise regulation of their structures and corresponding properties. While unlike conventional postsynthetic modification methods, SLI requires the careful selection of linkers and framework design to ensure precise positioning for installation, which gives rise to the well-designed and ordered positions for the installed linkers, confirmed directly by X-ray diffraction technology.Recent advancements in MOF synthesis have led to the creation of increasingly tailored flexible matrix structures, particularly due to the diverse connection modes of multicore metal clusters, especially for the Zr6 cluster. The spatial hindrance of certain ligands has resulted in the formation of unsaturated metal clusters and various missing linker pockets. Examples of these advanced MOFs include PCN-606, PCN-608, PCN-609, PCN-700, and PCN-808, which feature specific open metal sites and certain framework flexibility conducive to SLI. Strategically positioned open metal sites within these frameworks serve as predetermined anchor points for desired functional molecules, while the frameworks' flexibility can accommodate molecules of varying sizes to a certain extent, enlarging the scopes of application greatly. This precise positioning of functional groups enables the creation of tailored sites for enhanced applications, such as adsorption, catalysis, and recognition.In this Account, we delve into the intricate process of designing and synthesizing MOFs with appropriate missing-linker pockets for the aforementioned applications. We discuss the meticulous selection of functional linkers and the methods used to insert them into the corresponding missing-linker pockets within the MOFs. Additionally, we explore the diverse properties and functionalities of the resulting MOFs, focusing on their adsorptive, catalytic, and recognition performance. Furthermore, we provide insights into the future trajectory of SLI methods, complemented by our recent works. This Account not only reviews the evolution of the SLI method but also underscores its practical applications across various functional domains, paving a rational pathway for the future development of advanced multifunctional MOFs through this method.
Collapse
Affiliation(s)
- Zongsu Han
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Yihao Yang
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Joshua Rushlow
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Rong-Ran Liang
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
3
|
Johnson HM, Hurlock MJ, Lare MF, Forseth LV, Mosset DM, Li J, Zhang Q. Probing ligand conformation and net dimensionality in a series of tetraphenylethene-based metal-organic frameworks. Front Chem 2024; 12:1396123. [PMID: 38725653 PMCID: PMC11079141 DOI: 10.3389/fchem.2024.1396123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Tetraphenylethene-based ligands with lowered symmetry are promising building blocks for the construction of novel luminescent metal-organic frameworks (MOFs). However, few examples have been reported, and predicting the ligand conformation and the dimensionality of the resulting MOF remains challenging. In order to uncover how synthetic conditions and accessible ligand conformations may affect the resulting MOF structure, four new MOF structures were synthesized under solvothermal conditions using the meta-coordinated tetraphenylethene-based ligand m-ETTC and paddlewheel SBUs composed of Co(II), Cu(II), and Zn(II). WSU-10 (WSU = Washington State University) is formed with either Zn or Cu comprising stacked psuedo-2D layers. The dimensionality of WSU-10 can be intentionally increased through the addition of pyrazine as a pillar ligand into the synthesis, forming the 3D structure WSU-11. The third structure, WSU-20, is formed by the combination of Zn or Co with m-ETTC and is intrinsically 3D without the use of a pillar ligand; interestingly, this is the result of a distortion in the paddlewheel SBU. Finally, Cu was also found to form a new structure (WSU-12), which displays an m-ETTC conformation unique from that found in the other isolated MOFs. Structural features are compared across the series and a mechanistic relationship between WSU-10 and -20 is proposed, providing insight into the factors that can encourage the generation of frameworks with increased dimensionality.
Collapse
Affiliation(s)
- Hannah M. Johnson
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Matthew J. Hurlock
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, NM, United States
| | - Monipak F. Lare
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Lauren V. Forseth
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Dylan M. Mosset
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Jiahong Li
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Qiang Zhang
- Department of Chemistry, Washington State University, Pullman, WA, United States
- Materials Science and Engineering Program, Washington State University, Pullman, WA, United States
| |
Collapse
|
4
|
Wang FF, Hou B. Construction of zirconium/hafnium-oxo clusters based on a new protection-calix[8]arene. Dalton Trans 2024; 53:6507-6514. [PMID: 38512102 DOI: 10.1039/d4dt00169a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Calix[8]arene has been used as a promising type of macrocyclic ligand for the construction of multinuclear metal-oxo clusters (MOCs), but not for zirconium/hafnium-oxo clusters (Zr/HfOCs). In this paper, we report the first series of ZrOCs (HfOCs) based on calix[8]arene: Zr4, Zr8, Hf4, and Hf8. Zr8/Hf8 has a rhombohedral conformation and can be regarded as a derivative of the octahedral Zr6 cluster. Remarkably, I2 adsorption experiments indicate that Zr4 (Zr8) adsorbs much faster than Hf4 (Hf8). Density functional theory (DFT) calculations show that metallic Zr atoms interact more strongly with I2 than metallic Hf atoms. The successful application of calix[8]arene for the synthesis of well-defined ZrOCs (HfOCs) shows a bright future for MOCs protected by macrocyclic ligands.
Collapse
Affiliation(s)
- Fei-Fei Wang
- Department of Chemistry, Xinzhou Normal University, Xinzhou, 034000, China.
| | - Baoshan Hou
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Zhejiang, Hangzhou, 310030, China.
| |
Collapse
|
5
|
Xia J, Si J, Zhou K, Xia HL, Zhang J, Xu Y, Wang L, Liu XY. Carboxyl position-directed structure diversity in zirconium-tricarboxylate frameworks. Dalton Trans 2023; 52:17679-17683. [PMID: 37997636 DOI: 10.1039/d3dt03348a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Herein, three tritopic carboxylic acids were used to construct three Zr-MOFs, HIAM-4033, HIAM-4034, and HIAM-4035, to investigate the effect of carboxyl position on the MOF structures. The results showed that HIAM-4033 and HIAM-4034 possess (3,9)-c models with different underlying nets, whereas HIAM-4035 exhibits the same underlying net as UiO-68. Nanosized HIAM-4033 exhibits excellent sensitivity and selectivity for detecting aromatic acids, such as benzoic acid and 2-fluorobenzoic acid, compared with aliphatic acids and inorganic acids. This study offers new insights into achieving an organic linker directed structure evolution of Zr-MOFs, which might facilitate the discovery of unprecedented underlying nets.
Collapse
Affiliation(s)
- Jun Xia
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China.
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Jincheng Si
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Hai-Lun Xia
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Jian Zhang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Yingqian Xu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China.
| | - Lei Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| |
Collapse
|
6
|
Meng SS, Xu M, Guan H, Chen C, Cai P, Dong B, Tan WS, Gu YH, Tang WQ, Xie LG, Yuan S, Han Y, Kong X, Gu ZY. Anisotropic flexibility and rigidification in a TPE-based Zr-MOFs with scu topology. Nat Commun 2023; 14:5347. [PMID: 37660056 PMCID: PMC10475113 DOI: 10.1038/s41467-023-41055-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023] Open
Abstract
Tetraphenylethylene (TPE)-based ligands are appealing for constructing metal-organic frameworks (MOFs) with new functions and responsiveness. Here, we report a non-interpenetrated TPE-based scu Zr-MOF with anisotropic flexibility, that is, Zr-TCPE (H4TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), remaining two anisotropic pockets. The framework flexibility is further anisotropically rigidified by installing linkers individually at specific pockets. By individually installing dicarboxylic acid L1 or L2 at pocket A or B, the framework flexibility along the b-axis or c-axis is rigidified, and the intermolecular or intramolecular motions of organic ligands are restricted, respectively. Synergistically, with dual linker installation, the flexibility is completely rigidified with the restriction of ligand motion, resulting in MOFs with enhanced stability and improved separation ability. Furthermore, in situ observation of the flipping of the phenyl ring and its rigidification process is made by 2H solid-state NMR. The anisotropic rigidification of flexibility in scu Zr-MOFs guides the directional control of ligand motion for designing stimuli-responsive emitting or efficient separation materials.
Collapse
Affiliation(s)
- Sha-Sha Meng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Hanxi Guan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, 324100, China
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Bo Dong
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wen-Shu Tan
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yu-Hao Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wen-Qi Tang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Lan-Gui Xie
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Electron Microscopy Center, South China University of Technology, Guangzhou, 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Li J, Goncharov VG, Strzelecki AC, Xu H, Guo X, Zhang Q. Energetic Systematics of Metal-Organic Frameworks: A Case Study of Al(III)-Trimesate MOF Isomers. Inorg Chem 2022; 61:15152-15165. [PMID: 36099470 DOI: 10.1021/acs.inorgchem.2c02345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermal stability and thermodynamic properties of aluminum(III)-1,3,5-benzenetricarboxylate (Al-BTC) metal-organic frameworks (MOFs), including MIL-96, MIL-100, and MIL-110, have been investigated through a suite of calorimetric and X-ray techniques. In situ high-temperature X-ray diffraction (HT-XRD) and thermogravimetric analysis coupled with differential scanning calorimetry (TGA-DSC) revealed that these MOFs undergo thermal amorphization prior to ligand combustion. Thermal stabilities of Al-BTC MOFs follow the increasing order MIL-110 < MIL-96 < MIL-100, based on estimated amorphization temperatures. Their thermodynamic stabilities were directly measured by high-temperature drop combustion calorimetry. Normalized (per mole of Al) enthalpies of formation (ΔH*f) of MIL-96, MIL-100, and MIL-110 from Al2O3, H3BTC, and H2O (only Al2O3 and H3BTC for MIL-100) were determined to be -56.9 ± 13.7, -36.2 ± 17.9, and 62.8 ± 11.6 kJ/mol·Al, respectively. Our results demonstrate that MIL-96 and MIL-100 are thermodynamically favorable, while MIL-110 is metastable, in agreement with thermal and hydrothermal stability trends. The enthalpic preferences of MIL-96 and MIL-100 may be attributed to their shared trinuclear μ3-oxo-bridged (Al3(μ3-O)) secondary building units (SBUs) promoting stabilization of Al polyhedra by the ligands within these frameworks, in comparison to the sterically strained Al8 octamer cluster cores formed in MIL-110. Furthermore, similar ΔH*f of MIL-96 and MIL-100 explain their concurrent formation as physical mixtures often encountered during synthesis, implying the importance of kinetic factors that may facilitate the formation of Al-BTC framework isomers. More importantly, the normalized formation enthalpies of Al-BTC MOF isomers follow a negative correlation with the ratio of charged coordinated substituents to linkers (normalized per mole of Al within the MOF formula unit), with enthalpic preference given to systems with smaller (O2- + OH-)/ligand ratios. This trend has been successfully extended to the previously measured ΔH*f of several Zn4O-based frameworks (e.g., MOF-5, MOF-5(DEF), MOF-177, UMCM-1), all of which have been found to be metastable with respect to their dense phases (ZnO, H2O, and ligands). The result suggests that carboxylate MOFs with higher metal coordination environments attain more enthalpic stabilization from the coordinated ligands. Thus, the formation of some lanthanide/actinide, transition metal, and main group carboxylate frameworks may be energetically more favored, which, however, requires further studies.
Collapse
Affiliation(s)
- Jiahong Li
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Vitaliy G Goncharov
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.,Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States.,Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164, United States
| | - Andrew C Strzelecki
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.,Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States.,Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164, United States.,Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Hongwu Xu
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.,School of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaofeng Guo
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.,Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States.,Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164, United States
| | - Qiang Zhang
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.,Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
8
|
Teng Q, He Y, Chen G, Chen S. Cage‐Ligand
Strategy for the Construction of Zr
4
(embonate)
6
–based
MOFs
with
Third‐Order Nonlinear‐Optical
Properties. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qian Teng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Yan‐Ping He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Guang‐Hui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Shu‐Mei Chen
- College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| |
Collapse
|
9
|
Loukopoulos E, Angeli GK, Kouvidis K, Tsangarakis C, Trikalitis PN. Accessing 14-Connected Nets: Continuous Breathing, Hydrophobic Rare-Earth Metal Organic Frameworks Based on 14-c Hexanuclear Clusters with High Affinity for Non-Polar Vapors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22242-22251. [PMID: 35535746 DOI: 10.1021/acsami.2c05961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Highly connected metal organic frameworks (MOFs) in which at least one building block has connectivity higher than twelve are very rare and much desirable. We report here the first examples of isostructural 14-connected MOFs, RE-frt-MOF-1, constructed from the assembly of 14-c hexanuclear rare-earth clusters, [RE6(μ3-X)8(COO)12]2- (RE: Y3+, Tb3+, Dy3+, Ho3+, Er3+, Yb3+ and X: OH-/F-) with a tritopic carboxylate-based organic linker. This linker serves as a 3-c and 4-c organic node resulting in the formation of a unique, trinodal (3,4,14)-c framework. RE-frt-MOF-1 are stable in air and alkaline aqueous solutions and show an intriguingly continuous, reversible breathing behavior, between a wide and a narrow-pore phase, upon guest removal. Crystallinity is retained during breathing, and single-crystal X-ray diffraction shed light into the associated structural transformation. Vapor sorption studies performed on Y-frt-MOF-1 revealed a high affinity for non-polar vapors such as n-hexane, cyclohexane, and benzene, displaying type I isotherms with high uptake at low relative pressures (<10-3 p/p0), associated with the hydrophobic nature of the 1D channels and also with their rhombic shape. In contrast, polar vapors such as acetonitrile and ethanol show type V isotherms due to favorable vapor-vapor interactions. Notably these vapors, except cyclohexane, trigger the transition from the narrow to the wide pore phase, accompanied by a remarkable increase in uptake, reaching 70.6, 109, 100.4, and 87.7% for n-hexane, benzene, acetonitrile, and ethanol, respectively.
Collapse
Affiliation(s)
- Edward Loukopoulos
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Giasemi K Angeli
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | | | | | | |
Collapse
|
10
|
Synthesis, characterization, ion-exchange, and catalytic properties of three isostructural copper(II) coordination polymers with a flexible bis(triazole) ligand. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Pascual-Colino J, Artetxe B, Beobide G, Castillo O, Fidalgo-Mayo ML, Isla-López A, Luque A, Mena-Gutiérrez S, Pérez-Yáñez S. The Chemistry of Zirconium/Carboxylate Clustering Process: Acidic Conditions to Promote Carboxylate-Unsaturated Octahedral Hexamers and Pentanuclear Species. Inorg Chem 2022; 61:4842-4851. [PMID: 35286083 PMCID: PMC9993394 DOI: 10.1021/acs.inorgchem.1c03466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Clustering chemistry is a key point in the design and synthesis of the secondary building units that comprise metal-organic frameworks (MOFs) based on group IV metals. In this work, the first stages of the zirconium-carboxylate clustering process in alcohol/water mixtures are studied in detail using the monocarboxylic benzoic and hydroxybenzoic acids to avoid the polymerization. Mass spectroscopy measurements performed on the reactions revealed the presence of hexa- and pentanuclear species even at low pH values and also evidenced the acid-base nature and pH dependence of the transformation between both species. The control on the chemistry governing the equilibria between these species has allowed us to isolate six new compounds in the solid state. The single-crystal X-ray diffraction analysis revealed that they are closely related to the well-known [Zr6(O)4(OH)4(OOC)12] secondary building unit found in many MOFs by removing carboxylic ligands in the case of the hexameric species ([Zr6(O)4(OH)4(OOC)8(H2O)8]4+) or by additionally removing one of the metal centers in the case of the pentameric entities ([Zr5(O)2(OH)6(OOC)4(H2O)11(alcohol)]6+). Going in detail, the unsaturated hexameric clusters exhibit different dispositions of their eight carboxylate ligands in such a way that the remaining four carboxylate-free positions are arranged according to a square planar or tetrahedral symmetry. It should be highlighted that the pentameric complexes imply an unprecedented core nuclearity in zirconium clusters and thus their isolation provides a novel building block for the design of metal-organic materials.
Collapse
Affiliation(s)
- Jon Pascual-Colino
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain
| | - Beñat Artetxe
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain
| | - Garikoitz Beobide
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain.,BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa E-48940, Spain
| | - Oscar Castillo
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain.,BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa E-48940, Spain
| | - Maria Luz Fidalgo-Mayo
- Departamento de Química Orgánica e Inorgánica, Facultad de Farmacia, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Vitoria-Gasteiz E-01006, Spain
| | - Ainhoa Isla-López
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain
| | - Antonio Luque
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain.,BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa E-48940, Spain
| | - Sandra Mena-Gutiérrez
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain
| | - Sonia Pérez-Yáñez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa E-48940, Spain.,Departamento de Química Orgánica e Inorgánica, Facultad de Farmacia, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Vitoria-Gasteiz E-01006, Spain
| |
Collapse
|
12
|
Fan L, Yue L, Sun W, Wang X, Zhou P, Zhang Y, He Y. Ligand Bent-Angle Engineering for Tuning Topological Structures and Acetylene Purification Performances of Copper-Diisophthalate Frameworks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40788-40797. [PMID: 34416107 DOI: 10.1021/acsami.1c13524] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To enrich structural chemistry and widen the application prospects of MOFs (metal-organic frameworks), the development of a synthetic strategy to realize structural and functional modulation is highly demanded. By implementation of the linker bent-angle engineering strategy, three banana-like diisophthalate linkers with distinct bent angles were designed and synthesized. The inclusion of the targeted linkers into MOFs through solvothermal assembly with CuCl2·2H2O under identical conditions yielded three crystalline solids featuring diversified topological structures as revealed by X-ray crystallographic studies. Furthermore, functional explorations indicated that they are promising solid adsorbents for acetylene (C2H2) purification application with structurally dependent separation potentials. The results reported in this study illustrated a rare example of modulating the topological structures and separation efficiencies of MOFs by engineering the ligand bent angles.
Collapse
Affiliation(s)
- Lihui Fan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Lianglan Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Wanqi Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Xinxin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Ping Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| |
Collapse
|