1
|
He Z, Yang J, Liu L. Design of Supported Metal Catalysts and Systems for Propane Dehydrogenation. JACS AU 2024; 4:4084-4109. [PMID: 39610729 PMCID: PMC11600159 DOI: 10.1021/jacsau.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Propane dehydrogenation (PDH) is currently an approach for the production of propylene with high industrial importance, especially in the context of the shale gas revolution and the growing global demands for propylene and downstream commodity chemicals. In this Perspective article, we comprehensively summarize the recent advances in the design of advanced catalysts for PDH and the new understanding of the structure-performance relationship in supported metal catalysts. Furthermore, we discuss the gaps between fundamental research and practical industrial applications in the catalyst developments for the PDH process. In particular, we overview some critical issues regarding catalyst regeneration and the compatibility of the catalyst and reactor design. Finally, we make perspectives on the future directions of PDH research, including the efforts toward achieving a unified understanding of the structure-performance relationship, innovation in reactor engineering, and translation of the knowledge accumulated on PDH studies to other important alkane dehydrogenation reactions.
Collapse
Affiliation(s)
- Zhe He
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jingnan Yang
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lichen Liu
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Lu H, Zhong Y, Jie Y, Yin P, Shen TY, Guo JY, Pu M, Yan H. DFT study on the mechanism of methanol dehydrogenation over Ru xP y surfaces. Phys Chem Chem Phys 2024; 26:26900-26910. [PMID: 39412837 DOI: 10.1039/d4cp03025g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Methanol dehydrogenation (MD) is highly valuable in hydrogen energy production, and the introduction of nonmetals has received much attention to improve the activity and stability of the MD catalysts, but the understanding of the role of non-metallic elements in catalyzing the MD reaction is rather limited. Density functional theory (DFT) is employed to investigate the mechanism of methanol dehydrogenation on RuxPy surfaces. In this work, the P element is introduced into the Ru-based catalyst to obtain dispersed Ru sites and RuxPy (x/y = 2 : 1, 1 : 1, and 1 : 2) catalysts are designed. CH3OH adsorption, electronic structure of the catalyst, energy barriers for carbon accumulation reactions, and the mechanism of methanol decomposition are systematically calculated. The results of the effective reaction barrier (Eeffa) reveal that the order of the activity of the MD reaction is RuP(112) > Ru(0001) > Ru2P(210) > RuP2(110). The most preferable pathway on RuP(112) is pathway 1 (CH3OH* → CH3O* → CH2O* → CHO* → CO*). After the introduction of P, the weakened CO adsorption enhanced the resistance of catalysts to CO poisoning, and the activation energy of the carbon accumulation reaction increased, indicating that the anti-coking ability of the catalysts is improved. This theoretical study contributes to the design and modulation of highly active and stable metal catalysts for MD reactions.
Collapse
Affiliation(s)
- Hao Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yuan Zhong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yao Jie
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Pan Yin
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Tian-Yao Shen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jing-Yi Guo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Yang T, Ma R, Li J, Liu Y, Feng J, He Y, Li D. The structural decoration of Ru catalysts by boron for enhanced propane dehydrogenation. FUNDAMENTAL RESEARCH 2024; 4:1147-1156. [PMID: 39659507 PMCID: PMC11630713 DOI: 10.1016/j.fmre.2022.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/03/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Propane dehydrogenation (PDH) is an efficient technology for the direct production of propylene. Nevertheless, current PDH catalysts mainly rely on precious Pt or toxic Cr and especially undergo severe coke deposition. Herein, we report a Ru catalyst decorated by boron species (Ru-3B/Al2O3), which exhibits high catalytic performance for PDH. HAADF-STEM, EELS, and CO-FTIR characterization are used to identify the surface structure of the Ru active component, which shows that the high-energy unsaturated coordination sites, including corners, edges and step atoms for Ru-3B/Al2O3, are appropriately modified by BOx species. The encapsulation of high-energy active sites prone to C-C cracking and deep dehydrogenation leads to higher propylene selectivity (> 95%) and strong carbon resistance (kd 0.0007 min) over Ru-3B/Al2O3. The XPS and H2-TPR results show that the migration of B species is driven by the reduction of B2O3 to B2O2 and that the coating degree of Ru particles is controlled by the chemical valance of Ru species.
Collapse
Affiliation(s)
- Tianxing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Materials and Chemical Engineering, Lianyungang Technical College, Lianyungang, Jiangsu 222006, China
| | - Rui Ma
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Jiale Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China
| | - Junting Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Materials and Chemical Engineering, Lianyungang Technical College, Lianyungang, Jiangsu 222006, China
| | - Yufei He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Materials and Chemical Engineering, Lianyungang Technical College, Lianyungang, Jiangsu 222006, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Materials and Chemical Engineering, Lianyungang Technical College, Lianyungang, Jiangsu 222006, China
| |
Collapse
|
4
|
Zhai Z, Zhang B, Wang Y, Liu G. Fine-tuned local coordination environment of Pt-N in nanocarbons for efficient propane dehydrogenation. Phys Chem Chem Phys 2024; 26:3263-3273. [PMID: 38196379 DOI: 10.1039/d3cp04215d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Based on the disturbance of electronic density, nitrogen-doped nanocarbons show promising properties to anchor metal clusters. However, precisely regulating the coordination mode between N species and the active site remains challenging. Herein, we rationally designed three N types (graphitic N, pyridinic N and pyrrolic N) in nanocarbons to anchor Pt clusters for the benchmark propane dehydrogenation. The specific activity of the pyridinic-N-doped catalyst was 147.54 molC3H6 molPt-1 h-1 at 550 °C, which was 1.3 times higher than those of graphitic- and pyrrolic-N-doped catalysts. Unlike the regular tetrahedron Pt cluster in the graphitic-N catalyst or the distorted three-layered Pt cluster in the pyrrolic-N catalyst, the Pt cluster in the pyridinic-N catalyst was an inverted tetrahedron, which increased the contact degree without geometric repulsion towards C-H bond scission. The geometric parameters of detached H and C atoms in the methylene group for the pyridinic N catalyst was decreased to strengthen the C-H bond scission. After CH3CHCH3* adsorption, the Bader charge of the Pt active site also became highly positive, which tailored the d-band center closer to the Fermi level and provided more vacant orbitals for C-H bond breakage. Therefore, pyridinic N in nanocarbons is promising to anchor small-sized Pt for alkane dehydrogenation in terms of geometric and electronic effects.
Collapse
Affiliation(s)
- Ziwei Zhai
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Bofeng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Yutong Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
| |
Collapse
|
5
|
Sharma D, Choudhary P, Kumar S, Krishnan V. Transition Metal Phosphide Nanoarchitectonics for Versatile Organic Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207053. [PMID: 36650943 DOI: 10.1002/smll.202207053] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Transition metal phosphides (TMP) posses unique physiochemical, geometrical, and electronic properties, which can be exploited for different catalytic applications, such as photocatalysis, electrocatalysis, organic catalysis, etc. Among others, the use of TMP for organic catalysis is less explored and still facing many complex challenges, which necessitate the development of sustainable catalytic reaction protocols demonstrating high selectivity and yield of the desired molecules of high significance. In this regard, the controlled synthesis of TMP-based catalysts and thorough investigations of underlying reaction mechanisms can provide deeper insights toward practical achievement of desired applications. This review aims at providing a comprehensive analysis on the recent advancements in the synthetic strategies for the tailored and tunable engineering of structural, geometrical, and electronic properties of TMP. In addition, their unprecedented catalytic potential toward different organic transformation reactions is succinctly summarized and critically analyzed. Finally, a rational perspective on future opportunities and challenges in the emerging field of organic catalysis is provided. On the account of the recent achievements accomplished in organic synthesis using TMP, it is highly anticipated that the use of TMP combined with advanced innovative technologies and methodologies can pave the way toward large scale realization of organic catalysis.
Collapse
Affiliation(s)
- Devendra Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Priyanka Choudhary
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Sahil Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
6
|
Zhong Y, Zhao XJ, Feng YL, Lu H, Yin P, Chen ZR, Jie Y, Guo JY, Pu M, Yan H. DFT study on the electrochemical synthesis of ammonia over Mo2C(121) with N-doping. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Chernyak SA, Corda M, Dath JP, Ordomsky VV, Khodakov AY. Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook. Chem Soc Rev 2022; 51:7994-8044. [PMID: 36043509 DOI: 10.1039/d1cs01036k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light olefins are important feedstocks and platform molecules for the chemical industry. Their synthesis has been a research priority in both academia and industry. There are many different approaches to the synthesis of these compounds, which differ by the choice of raw materials, catalysts and reaction conditions. The goals of this review are to highlight the most recent trends in light olefin synthesis and to perform a comparative analysis of different synthetic routes using several quantitative characteristics: selectivity, productivity, severity of operating conditions, stability, technological maturity and sustainability. Traditionally, on an industrial scale, the cracking of oil fractions has been used to produce light olefins. Methanol-to-olefins, alkane direct or oxidative dehydrogenation technologies have great potential in the short term and have already reached scientific and technological maturities. Major progress should be made in the field of methanol-mediated CO and CO2 direct hydrogenation to light olefins. The electrocatalytic reduction of CO2 to light olefins is a very attractive process in the long run due to the low reaction temperature and possible use of sustainable electricity. The application of modern concepts such as electricity-driven process intensification, looping, CO2 management and nanoscale catalyst design should lead in the near future to more environmentally friendly, energy efficient and selective large-scale technologies for light olefin synthesis.
Collapse
Affiliation(s)
- Sergei A Chernyak
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Massimo Corda
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Jean-Pierre Dath
- Direction Recherche & Développement, TotalEnergies SE, TotalEnergies One Tech Belgium, Zone Industrielle Feluy C, B-7181 Seneffe, Belgium
| | - Vitaly V Ordomsky
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Andrei Y Khodakov
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| |
Collapse
|
8
|
Zhang Y, Chen X, Ali AM, Zhang H. Screening of transition metal doped two-dimensional C2N (TM-C2N) as high-performance catalyst for the non-oxidative propane dehydrogenation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Yang F, Zhang J, Shi Z, Chen J, Wang G, He J, Zhao J, Zhuo R, Wang R. Advanced design and development of catalysts in propane dehydrogenation. NANOSCALE 2022; 14:9963-9988. [PMID: 35815671 DOI: 10.1039/d2nr02208g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Propane dehydrogenation (PDH) is an industrial technology for direct propylene production, which has received extensive attention and realized large-scale application. At present, the commercial Pt/Cr-based catalysts suffer from fast deactivation and inferior stability resulting from active species sintering and coke depositing. To overcome the above problems, several strategies such as the modification of the support and the introduction of additives have been proposed to strengthen the catalytic performance and prolong the robust stability of Pt/Cr-based catalysts. This review firstly gives a brief description of the development of PDH and PDH catalysts. Then, the advanced research progress of supported noble metals and non-noble metals together with metal-free materials for PDH is systematically summarized along with the material design and active origin as well as the existing problems in the development of PDH catalysts. Furthermore, the review also emphasizes advanced synthetic strategies based on novel design of PDH catalysts with improved dehydrogenation activity and stability. Finally, the future challenges and directions of PDH catalysts are provided for the development of their further industrial application.
Collapse
Affiliation(s)
- Fuwen Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zongbo Shi
- REZEL Catalysts Corporation, Shanghai 200120, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Junjie He
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Junyu Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | | | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Lin X, Zhang J, Tang J, Yang Y, Liu C, Huang J. Atomically precise structures of Pt 2(S-Adam) 4(PPh 3) 2 complexes and catalytic application in propane dehydrogenation. NANOSCALE 2022; 14:2482-2489. [PMID: 35103280 DOI: 10.1039/d1nr07286b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a bridge between single metal atoms and metal nanoclusters, atomically precise metal complexes are of great significance for controlled synthesis and catalytic applications at the atomic level. Herein, novel Pt2(S-Adam)4(PPh3)2 complexes were prepared via the conventional synthetic methods of metal nanoclusters. The atomically precise crystal structures of the binuclear Pt complexes with three kinds of packing modes in a unit cell were determined by X-ray crystallography. The two Pt atoms are bridged by two S atoms of thiolates, constructing a rhombus on a plane. Moreover, the ultraviolet visible absorption spectra of Pt2(S-Adam)4(PPh3)2 complexes show an apparent absorption peak centered at 454 nm. Furthermore, the Pt complexes were used as precursors to prepare catalysts for non-oxidative propane dehydrogenation. The as-prepared Pt-based catalysts with a particle size of approximately 1 nm demonstrated a propane conversion of about 18% and significantly enhanced selectivity for propylene, up to 93%. Our work will be beneficial to the basic understanding of platinum complexes, as well as the improvement of the catalytic dehydrogenation of propane.
Collapse
Affiliation(s)
- Xinzhang Lin
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junying Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jie Tang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jiahui Huang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
11
|
Zhai Z, Zhang B, Wang L, Zhang X, Liu G. Tailoring the catalytic performance of single platinum anchored on graphene by vacancy engineering for propane dehydrogenation: a theoretical study. Phys Chem Chem Phys 2021; 23:22004-22013. [PMID: 34569572 DOI: 10.1039/d1cp02631c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Propane dehydrogenation (PDH) is an effective approach to produce propylene. Downsizing the Pt species to single atom catalysts (SACs) has become a hotspot, owing to the maximum utilization and excellent catalytic behavior. However, the agglomeration of SACs is the decisive limitation for high temperature PDH. Herein, single Pt atoms were anchored on graphene with different types of vacancies, and their catalytic performances on PDH were explored based on density functional theory (DFT). As the vacancy size increased, the catalytic activity decreased. It was because the combined site of the detached H atom in propane would transfer from the Pt atom to the C atom around vacancies, thus increasing the migration distance and lowering the activity. However, with the increase of vacancy size, the selectivity to propylene was improved, owing to the enhanced repulsion between C atoms in graphene and propylene. Therefore, instead of stabilizing the single atom, vacancies in carbon materials can also tailor the catalytic performance by geometric disturbance. This fundamental work opens up the possibility for purposeful SAC design in PDH.
Collapse
Affiliation(s)
- Ziwei Zhai
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Bofeng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Li Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|