1
|
Kalpattu A, Falvey DE, Fourkas JT. Identifying efficiency-loss pathways in triplet-triplet annihilation upconversion systems. Phys Chem Chem Phys 2025; 27:11000-11016. [PMID: 40365643 DOI: 10.1039/d5cp00578g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) systems have been studied extensively recently, and have been proposed for use in a wide range of applications. Identification of the dominant mechanisms of upconversion-efficiency loss (UEL) will assist in the development of efficient TTA-UC systems. In this work, we combine experiments and kinetic analysis to study UEL. We identify exciplex formation and reverse triplet energy transfer (TET) as the two most important UEL mechanisms in the model TTA-UC system of platinum octaethylporphyrin (PtOEP) and 9,10-diphenylanthracene (DPA). Based on spectral analysis and time-resolved photoluminescence experiments, we show that exciplex formation is a potent UEL pathway in the PtOEP-DPA system. We demonstrate that prolonged sensitizer phosphorescence arises from reverse TET from annihilator triplet states, and that the reverse TET is likely facilitated by thermal population of low-frequency vibrational states in the sensitizer and the annihilator. Additionally, we demonstrate how the rate constants for reverse TET and exciplex formation can be estimated based on knowledge of a few key parameters and the experimental value of the optimum sensitizer concentration.
Collapse
Affiliation(s)
- Abhishek Kalpattu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Daniel E Falvey
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Maryland Quantum Materials Center, University of Maryland, College Park, MD 20817, USA
| |
Collapse
|
2
|
Zähringer TJB, Heusel C, Schmitz M, Glorius F, Kerzig C. Pushing the limit of triplet-triplet annihilation photon upconversion towards the UVC range. Chem Commun (Camb) 2025. [PMID: 40401348 DOI: 10.1039/d5cc01834j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Triplet-triplet annihilation photon upconversion (TTA-UC) provides a milder alternative to traditional UVB/UVC photochemistry. However, suitable sensitizer-annihilator pairs are scarce, in particular in the high-energy UV regime. Herein, we present a benzene-based annihilator that, paired with a suitable sensitizer, generates upconverted emission approaching the UVC region for the first time.
Collapse
Affiliation(s)
- Till J B Zähringer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Corinna Heusel
- Organisch-Chemisches Institut, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Matthias Schmitz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Frank Glorius
- Organisch-Chemisches Institut, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.
| |
Collapse
|
3
|
Wei L, Yang C, Wu W. Optimizing TTA-UC performance by chemically tuning sensitizers and orderly organizing sensitizers and annihilators. Chem Commun (Camb) 2025; 61:7221-7235. [PMID: 40277143 DOI: 10.1039/d5cc00476d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC), which can efficiently convert low-energy light into high-energy light, has received extensive attention in cutting-edge fields such as photovoltaics, bioimaging, and photopolymerization. Currently, optimizing the performance of upconversion materials is a key issue in expanding the application scope of TTA-UC and an important driving force for promoting the progress of this field. This review summarizes recent advancements in enhancing TTA-UC performance through two primary strategies: (1) molecular design: chemical modification of sensitizers to optimize their photophysical properties. By optimizing their molecular structures, the energy difference between the singlet and triplet states of molecules was precisely adjusted, thus the energy losses in intersystem crossing (ISC) and triplet-triplet energy transfer (TTET) processes were effectively reduced, and the anti-Stokes shift was significantly expanded; (2) molecular organization: implementing strategies to control the spatial arrangement of sensitizers and annihilators at the molecular level. This includes the utilization of supramolecular host-guest systems. For example, by taking advantage of the special cavities of host molecules such as cyclodextrins and pillararenes, sensitizers or annihilators can be accurately encapsulated. Through supramolecular host-guest interactions, the intermolecular distance is reduced, thereby facilitating energy transfer between the sensitizers and annihilators. In addition, through co-crystallization, forming frameworks, introducing multiple hydrogen bonds, or leveraging organic/inorganic hybrid materials, the long-range ordered arrangement of annihilators has been realized, opening up new avenues for improving the efficiency of TTA-UC. Furthermore, this review also explores the existing challenges and future development directions. It aims to provide comprehensive guidance and new research ideas for researchers entering this field.
Collapse
Affiliation(s)
- Lingling Wei
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
4
|
Li L, Wang J, Zou J, Hu J, Liu S, Wan S, Shi Y, Liang Z, Wang X, Ye C. Enhanced Solid-State Triplet-Triplet Annihilation Upconversion Steered by AIE-Active Isomers. Chemistry 2025:e202500553. [PMID: 40213990 DOI: 10.1002/chem.202500553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
A red-to-blue solid-state triplet-triplet annihilation upconversion (TTA-UC) molecular crystal with a significantly improved upconverted photoluminescence intensity was first achieved via a controlled crystallization pathway. Cyano-substituted stilbene derivatives and transition metal complexes were coupled for TTA-UC systems. The photophysical properties of the two annihilators and their TTA-UC systems in solution and aggregate were comprehensively studied. Particularly, UC crystals were simply prepared under different crystallization conditions resulting in different morphological and structural features. It turned out that the UC crystal prepared in the surfactant-assisted crystallization method demonstrated a 100-fold higher UC intensity than that in the evaporation crystallization method. The morphological and structural study indicated small nanograins with intact crystalline lattice would facilitate the triplet energy migration leading to a boosted UC efficiency. This work provides a novel perspective for the facile construction of high-efficient solid-state TTA-UC systems by utilizing crystals with appropriate morphology, which significantly promotes the practical applications of TTA-UC.
Collapse
Affiliation(s)
- Lin Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Jin Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Jie Zou
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Jun Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Shangjie Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Shigang Wan
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Yizhong Shi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Zuoqin Liang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Xiaomei Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
5
|
Zeng W, Zhang Y, Chen H, Huang H, Peng Q. A General Formalism of Excitation-Dependent Luminescence Properties in Triplet-Triplet Annihilation Systems. J Chem Theory Comput 2025; 21:3092-3100. [PMID: 40085027 DOI: 10.1021/acs.jctc.4c01712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Triplet-triplet annihilation (TTA) has promising applications in optical functional devices and technologies due to its efficient exciton utilization and up-conversion. Traditionally, the change in the slope of the dual logarithmic relationship curve between emission and excitation light intensity from 2 to 1 has been regarded as evidence of the occurrence of TTA. However, this characteristic change was not observed in many single-component organic TTA systems in recent experiments. In this work, we develop new models for TTA processes by introducing more electronic states and transitions than those considered in the traditional model and derive a general formalism of excitation-dependent luminescence intensity, Iem = N(Ckex + Akex + B - B 2 + 2 AB k e x ). This formalism can be applied not only to typical TTA systems but also to systems whose dynamics cannot be accurately described using traditional models. As kex increases, the slope of log Iem ∼ log kex changes from 1 to n and then back to 1 (where 1 < n ≤ 2) with two distinct turning points, and the corresponding luminescence quantum yield (Φem) increases monotonically until it reaches saturation, which are fully confirmed by the steady-state spectrum experiments. The characteristic change in Φem is a more suitable universal criterion for judging the occurrence of TTA. These findings provide a valuable novel tool for probing the kinetic processes in TTA systems that are challenging to model.
Collapse
Affiliation(s)
- Wenwan Zeng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yincheng Zhang
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Chen
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hui Huang
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | |
Collapse
|
6
|
Owens R, Damrauer NH. Unfiltered Broadband Probes Can Obscure Long Time Dynamics in Populations Engaged in Second-Order Processes Including Annihilation. J Phys Chem Lett 2025; 16:2522-2528. [PMID: 40026028 DOI: 10.1021/acs.jpclett.5c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Transient absorption (TA) is a powerful tool; however, this work demonstrates that common broadband probes can increase excited-state populations, leading to significant variations in excited-state observables in systems prone to second-order dynamics. Triplet-triplet annihilation is an important case where this might be a concern, possibly impacting developments in photon upconversion. TIPS-Anthracene is a model annihilator, boasting long lifetimes and high annihilation yields in solution. Herein, a greater than 3 ms lifetime is inadvertently more than halved during TA experiments utilizing a typical 100 W Xe arc-lamp probe. Without additional evidence, promising systems might be incorrectly assumed to be poor annihilation candidates. Alternatively, this lifetime suppression can manifest nonlinearly when calculating annihilation rates from measured threshold intensities, leading to large overestimates of this critical rate parameter. Modified experiment designs, such as probe filtering discussed here, are necessary for accurate assessment of long-time dynamics in populations prone to second-order decay.
Collapse
Affiliation(s)
- Raythe Owens
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Niels H Damrauer
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Bennison MJ, Collins AR, Gomes Franca L, Burgoyne Morris GH, Willis-Fox N, Daly R, Karlsson JKG, Charles BL, Evans RC. Methacrylate-based copolymers as tunable hosts for triplet-triplet annihilation upconversion. MATERIALS ADVANCES 2025; 6:1089-1096. [PMID: 39802410 PMCID: PMC11718357 DOI: 10.1039/d4ma01221f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
The ability to convert light to higher energies through triplet-triplet annihilation upconversion (TTA-UC) is attractive for a range of applications including solar energy harvesting, bioimaging and anti-counterfeiting. Practical applications require integration of the TTA-UC chromophores within a suitable host, which leads to a compromise between the high upconversion efficiencies achievable in liquids and the durability of solids. Herein, we present a series of methacrylate copolymers as TTA-UC hosts, in which the glass transition temperature (T g), and hence upconversion efficiency can be tuned by varying the co-monomer ratios (n-hexyl methacrylate (HMA) and 2,2,2-trifluoroethyl methacrylate (TFEMA)). Using the model sensitiser/emitter pair of palladium(ii) octaethylporphyrin (PdOEP) and diphenylanthracene (DPA), the upconversion quantum yield was found to increase with decreasing glass transition temperature, reaching a maximum of 1.6 ± 0.2% in air at room temperature. Kinetic analysis of the upconversion and phosphorescence decays reveal that increased PdOEP aggregation in the glassy polymers leads to a competitive non-radiative relaxation pathway that quenches the triplet state. Notably, the threshold intensity is highly sensitive to the glass transition temperature, ranging from 1250 mW cm-2 for PHMA90TFEMA10 (T g = -9.4 °C) to ∼200 mW cm-2 for more 'glassy' hosts, e.g. PHMA33TFEMA67 (T g = 20.1 °C), suggesting the TTA-UC mechanism switches from diffusion-based collisions to triplet exciton migration at localised sensitiser-emitter pairs.
Collapse
Affiliation(s)
- Michael J Bennison
- Department of Materials Science and Metallurgy, University of Cambridge CB3 0FS UK
| | - Abigail R Collins
- Department of Materials Science and Metallurgy, University of Cambridge CB3 0FS UK
| | - Larissa Gomes Franca
- Department of Materials Science and Metallurgy, University of Cambridge CB3 0FS UK
| | | | - Niamh Willis-Fox
- Institute for Manufacturing, Department of Engineering, University of Cambridge 17 Charles Babbage Rd Cambridge CB3 0FS UK
| | - Ronan Daly
- Institute for Manufacturing, Department of Engineering, University of Cambridge 17 Charles Babbage Rd Cambridge CB3 0FS UK
| | - Joshua K G Karlsson
- Department of Materials Science and Metallurgy, University of Cambridge CB3 0FS UK
| | - Bethan L Charles
- Department of Materials Science and Metallurgy, University of Cambridge CB3 0FS UK
| | - Rachel C Evans
- Department of Materials Science and Metallurgy, University of Cambridge CB3 0FS UK
| |
Collapse
|
8
|
Dong Y, Shi Y, Chen S, Guo C, Zheng D, Gou H, Wan S, Ye C. Low blue-hazard white-light emission based on color-tunable triplet-triplet annihilation upconversion. J Colloid Interface Sci 2025; 677:504-512. [PMID: 39154443 DOI: 10.1016/j.jcis.2024.08.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/29/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
The commonly used artificial light sources, such as fluorescent lamps and white light-emitting diodes, often have a high ratio of blue light emission, which poses potential blue light hazards, especially one of the main culprits leading to eye diseases. Therefore, developing novel white lighting sources with low blue-hazard is highly appreciated. In this work, an air-stable and color-tunable triplet-triplet annihilation upconversion (TTA-UC) mechanism was proposed to realize the low blue-hazard white-light emission. The proposed design was composed of three primary RGB colors from the annihilator (9,10-diphenylanthracene, DPA), the laser excitation source, and the photosensitizer (palladium (II) octaetylporphyrin, PdOEP), respectively. The introduction of oil-in-water (o/w) microemulsion can effectively block the potential oxygen-induced triplet-quenching and benefit high UC efficiency. Moreover, either raising ambient temperatures or adding isobutanol can activate the UC process to yield white-light emission. Notably, the white-light emission with a Commission Internationale de l'Eclairage (CIE) coordinate of (0.33, 0.33) as well as a low ratio of blue emission (14.2 %) was achieved at an ambient temperature of 42 °C. Therefore, the proposed air-stable TTA-UC mechanism can significantly lower the blue-hazard and provide a novel solution for applications in lighting and display.
Collapse
Affiliation(s)
- Yuxiang Dong
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yizhong Shi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Shuoran Chen
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Cheng Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Daoyuan Zheng
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Haodong Gou
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Shigang Wan
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
9
|
Alabugin IV, Eckhardt P, Christopher KM, Opatz T. The Photoredox Paradox: Electron and Hole Upconversion as the Hidden Secrets of Photoredox Catalysis. J Am Chem Soc 2024; 146:27233-27254. [PMID: 39316772 DOI: 10.1021/jacs.4c10422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Although photoredox catalysis is complex from a mechanistic point of view, it is also often surprisingly efficient. In fact, the quantum efficiency of a puzzlingly large portion of photoredox reactions exceeds 100% (i.e., the measured quantum yields (QYs) are >1). Hence, these photoredox reactions can be more than perfect with respect to photon utilization. In several documented cases, a single absorbed photon can lead to the formation of >100 molecules of the product, behavior known to originate from chain processes. In this Perspective, we explore the underlying reasons for this efficiency, identify the nature of common catalytic chains, and highlight the differences between HAT and SET chains. Our goal is to show why chains are especially important in photoredox catalysis and where the thermodynamic driving force that sustains the SET catalytic cycles comes from. We demonstrate how the interplay of polar and radical processes can activate hidden catalytic pathways mediated by electron and hole transfer (i.e., electron and hole catalysis). Furthermore, we illustrate how the phenomenon of redox upconversion serves as a thermodynamic precondition for electron and hole catalysis. After discussing representative mechanistic puzzles, we analyze the most common bond forming steps, where redox upconversion frequently occurs (and issometimes unavoidable). In particular, we highlight the importance of 2-center-3-electron bonds as a recurring motif that allows a rational chemical approach to the design of redox upconversion processes.
Collapse
Affiliation(s)
- Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Paul Eckhardt
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kimberley M Christopher
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
10
|
Miyashita T, He S, Jaimes P, Kaledin AL, Fumanal M, Lian T, Lee Tang M. Oligoyne bridges enable strong through-bond coupling and efficient triplet transfer from CdSe QD trap excitons for photon upconversion. J Chem Phys 2024; 161:094707. [PMID: 39234973 DOI: 10.1063/5.0223478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
Polyyne bridges have attracted extensive interest as molecular wires due to their shallow distance dependence during charge transfer. Here, we investigate whether triplet energy transfer from cadmium selenide (CdSe) quantum dots (QDs) to anthracene acceptors benefits from the high conductance associated with polyyne bridges, especially from the potential cumulene character in their excited states. Introducing π-electron rich oligoyne bridges between the surface-bound anthracene-based transmitter ligands, we explore the triplet energy transfer rate between the CdSe QDs and anthracene core. Our femtosecond transient absorption results reveal that a rate constant damping coefficient of β is 0.118 ± 0.011 Å-1, attributed to a through-bond coupling mechanism facilitated by conjugation among the anthracene core, the oligoyne bridges, and the COO⊖ anchoring group. In addition, oligoyne bridges lower the T1 energy level of the anthracene-based transmitters, enabling efficient triplet energy transfer from trapped excitons in CdSe QDs. Density-functional theory calculations suggest a slight cumulene character in these oligoyne bridges during triplet energy transfer, with diminished bond length alternation. This work demonstrates the potential of oligoyne bridges in mediating long-distance energy transfer.
Collapse
Affiliation(s)
- Tsumugi Miyashita
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sheng He
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Paulina Jaimes
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Alexey L Kaledin
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
- The Cherry L. Emerson Center for Scientific Computation, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, USA
| | - Maria Fumanal
- Departament de Ciència de Materials i Química Física and IQTCUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Ming Lee Tang
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
11
|
Diaz-Andres A, Tonnelé C, Casanova D. Electronic Couplings for Triplet-Triplet Annihilation Upconversion in Crystal Rubrene. J Chem Theory Comput 2024; 20:4288-4297. [PMID: 38743825 PMCID: PMC11137828 DOI: 10.1021/acs.jctc.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Triplet-triplet annihilation photon upconversion (TTA-UC) is a process able to repackage two low-frequency photons into light of higher energy. This transformation is typically orchestrated by the electronic degrees of freedom within organic compounds possessing suitable singlet and triplet energies and electronic couplings. In this work, we propose a computational protocol for the assessment of electronic couplings crucial to TTA-UC in molecular materials and apply it to the study of crystal rubrene. Our methodology integrates sophisticated yet computationally affordable approaches to quantify couplings in singlet and triplet energy transfer, the binding of triplet pairs, and the fusion to the singlet exciton. Of particular significance is the role played by charge-transfer states along the b-axis of rubrene crystal, acting as both partial quenchers of singlet energy transfer and mediators of triplet fusion. Our calculations identify the π-stacking direction as holding notable triplet energy transfer couplings, consistent with the experimentally observed anisotropic exciton diffusion. Finally, we have characterized the impact of thermally induced structural distortions, revealing their key role in the viability of triplet fusion and singlet fission. We posit that our approaches are transferable to a broad spectrum of organic molecular materials, offering a feasible means to quantify electronic couplings.
Collapse
Affiliation(s)
- Aitor Diaz-Andres
- Donostia
International Physics Center (DIPC), Donostia 20018, Euskadi, Spain
| | - Claire Tonnelé
- Donostia
International Physics Center (DIPC), Donostia 20018, Euskadi, Spain
- IKERBASQUE,
Basque Foundation for Science, Bilbao 48009, Euskadi, Spain
| | - David Casanova
- Donostia
International Physics Center (DIPC), Donostia 20018, Euskadi, Spain
- IKERBASQUE,
Basque Foundation for Science, Bilbao 48009, Euskadi, Spain
| |
Collapse
|
12
|
Collins AR, Zhang B, Bennison MJ, Evans RC. Ambient solid-state triplet-triplet annihilation upconversion in ureasil organic-inorganic hybrid hosts. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:6310-6318. [PMID: 38707254 PMCID: PMC11064974 DOI: 10.1039/d4tc00562g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
Triplet-triplet-annihilation upconversion (TTA-UC) has attracted significant attention as an approach to harvest low energy solar photons that cannot be captured by conventional photovoltaic devices. However, device integration requires the design of solid-state TTA-UC materials that combine high upconversion efficiency with long term stability. Herein, we report an efficient solid-state TTA-UC system based on organic-inorganic hybrid polymers known as ureasils as hosts for the archetypal sensitiser/emitter pair of palladium(ii) octaethylporphyrin and diphenylanthracene. The role of the ureasil structure on the TTA-UC performance was probed by varying the branching and molecular weight of the organic precursor to tune the structural, mechanical, and thermal properties. Solid-state green-to-blue UC quantum yields of up to 1.86% were observed under ambient conditions. Notably, depending on the ureasil structure, UC emission could be retained for >70 days without any special treatment, including deoxygenation. Detailed analysis of the structure-function trends revealed that while a low glass transition temperature is required to promote TTA-UC molecular collisions, a higher inorganic content is the primary factor that determines the UC efficiency and stability, due to the inherent oxygen barrier provided by the silica nanodomains.
Collapse
Affiliation(s)
- Abigail R Collins
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Bolong Zhang
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Michael J Bennison
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Rachel C Evans
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| |
Collapse
|
13
|
Hudson RJ, MacDonald TSC, Cole JH, Schmidt TW, Smith TA, McCamey DR. A framework for multiexcitonic logic. Nat Rev Chem 2024:10.1038/s41570-023-00566-y. [PMID: 38273177 DOI: 10.1038/s41570-023-00566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 01/27/2024]
Abstract
Exciton science sits at the intersection of chemical, optical and spin-based implementations of information processing, but using excitons to conduct logical operations remains relatively unexplored. Excitons encoding information could be read optically (photoexcitation-photoemission) or electrically (charge recombination-separation), travel through materials via exciton energy transfer, and interact with one another in stimuli-responsive molecular excitonic devices. Excitonic logic offers the potential to mediate electrical, optical and chemical information. Additionally, high-spin triplet and quintet (multi)excitons offer access to well defined spin states of relevance to magnetic field effects, classical spintronics and spin-based quantum information science. In this Roadmap, we propose a framework for developing excitonic computing based on singlet fission (SF) and triplet-triplet annihilation (TTA). Various molecular components capable of modulating SF/TTA for logical operations are suggested, including molecular photo-switching and multi-colour photoexcitation. We then outline a pathway for constructing excitonic logic devices, considering aspects of circuit assembly, logical operation synchronization, and exciton transport and amplification. Promising future directions and challenges are identified, and the potential for realizing excitonic computing in the near future is discussed.
Collapse
Affiliation(s)
- Rohan J Hudson
- School of Chemistry, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Exciton Science
| | - Thomas S C MacDonald
- Australian Research Council Centre of Excellence in Exciton Science
- School of Physics, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jared H Cole
- Australian Research Council Centre of Excellence in Exciton Science
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Timothy W Schmidt
- Australian Research Council Centre of Excellence in Exciton Science
- School of Chemistry, UNSW Sydney, Sydney, New South Wales, Australia
| | - Trevor A Smith
- School of Chemistry, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Exciton Science
| | - Dane R McCamey
- Australian Research Council Centre of Excellence in Exciton Science, .
- School of Physics, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
14
|
Gilligan AT, Owens R, Miller EG, Pompetti NF, Damrauer NH. Enhancing NIR-to-visible upconversion in a rigidly coupled tetracene dimer: approaching statistical limits for triplet-triplet annihilation using intramolecular multiexciton states. Chem Sci 2024; 15:1283-1296. [PMID: 38274080 PMCID: PMC10806848 DOI: 10.1039/d3sc04795d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Important applications of photon upconversion through triplet-triplet annihilation require conversion of near-IR photons to visible light. Generally, however, efficiencies in this spectral region lag behind bluer analogues. Herein we consider potential benefits from a conformationally well-defined covalent dimer annihilator TIPS-BTX in studies that systematically compare function to a related monomer model TIPS-tetracene (TIPS-Tc). TIPS-BTX exhibits weak electronic coupling between chromophores juxtaposed about a polycyclic bridge. We report an upconversion yield ϕUC for TIPS-BTX that is more than 20× larger than TIPS-Tc under comparable conditions (0.16%). While the dimer ϕUC is low compared to bluer champion systems, this yield is amongst the largest so-far reported for a tetracenic dimer system and is achieved under unoptimized conditions suggesting a significantly higher ceiling. Further investigation shows the ϕUC enhancement for the dimer is due exclusively to the TTA process with an effective yield more that 30× larger for TIPS-BTX compared to TIPS-Tc. The ϕTTA enhancement for TIPS-BTX relative to TIPS-Tc is indicative of participation by intramolecular multiexciton states with evidence presented in spin statistical arguments that the 5TT is involved in productive channels. For TIPS-BTX we report a spin-statistical factor f = 0.42 that matches or exceeds values found in champion annihilator systems such as DPA. At the same time, the poor relative efficiency of TIPS-Tc suggests involvement of non-productive bimolecular channels and excimeric states are suspected. Broadly these studies indicate that funneling of photogenerated electronic states into productive pathways, and avoiding parasitic ones, remains central to the development of champion upconversion systems.
Collapse
Affiliation(s)
- Alexander T Gilligan
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
| | - Raythe Owens
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
| | - Ethan G Miller
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
| | - Nicholas F Pompetti
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
| | - Niels H Damrauer
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder Boulder Colorado 80309 USA
| |
Collapse
|
15
|
Glaser F, Schmitz M, Kerzig C. Coulomb interactions for mediator-enhanced sensitized triplet-triplet annihilation upconversion in solution. NANOSCALE 2023; 16:123-137. [PMID: 38054748 DOI: 10.1039/d3nr05265f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Sensitized triplet-triplet annihilation upconversion offers an attractive possibility to replace a high-energy photon by two photons with lower energy through the combination of a light-harvesting triplet sensitizer and an annihilator for the formation of a fluorescent singlet state. Typically, high annihilator concentrations are required to achieve an efficient initial energy transfer and as a direct consequence the most highly energetic emission is often not detectable due to intrinsic reabsorption by the annihilator itself. Herein, we demonstrate that the addition of a charge-adapted mediator drastically improves the energy transfer efficiency at low annihilator concentrations via an energy transfer cascade. Inspired by molecular dyads and recent developments in nanocrystal-sensitized upconversion, our system exploits a concept to minimize intrinsic filter effects, while boosting the upconversion quantum yield in solution. A sensitizer-annihilator combination consisting of a ruthenium-based complex and 9,10-diphenylanthracene (DPA) is explored as model system and a sulfonated pyrene serves as mediator. The impact of opposite charges between sensitizer and mediator - to induce coulombic attraction and subsequently result in accelerated energy transfer rate constants - is analyzed in detail by different spectroscopic methods. Ion pairing and the resulting static energy transfer in both directions is a minor process, resulting in an improved overall performance. Finally, the more intense upconverted emission in the presence of the mediator is used to drive two catalytic photoreactions in a two-chamber setup, illustrating the advantages of our approach, in particular for photoreactions requiring oxygen that would interfere with the upconversion system.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Matthias Schmitz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
16
|
Maiti S, Siebbeles LDA. Developments and Challenges Involving Triplet Transfer across Organic/Inorganic Heterojunctions for Singlet Fission and Photon Upconversion. J Phys Chem Lett 2023; 14:11168-11176. [PMID: 38055348 PMCID: PMC10726386 DOI: 10.1021/acs.jpclett.3c03013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
In this Perspective, we provide an overview of recent advances in harvesting triplets for photovoltaic and photon upconversion applications from two angles. In singlet fission-sensitized solar cells, the triplets are harvested through a low band gap semiconductor such as Si. Recent literature has shown how a thin interlayer or orientation of the singlet fission molecule can successfully lead to triplet transfer. On the other hand, the integration of transition metal dichalcogenides (TMDCs) with suitable organic molecules has shown triplet-triplet annihilation upconversion (TTA-UC) of near-infrared photons. We consider the theoretical aspect of the triplet transfer process between a TMDC and organic semiconductors. We discuss possible bottlenecks that can limit the harvesting of energy from triplets and perspectives to overcome these.
Collapse
Affiliation(s)
- Sourav Maiti
- Central
Laser Facility, RCaH, STFC-Rutherford Appleton
Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, United
Kingdom
| | - Laurens D. A. Siebbeles
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
17
|
Sengupta A, Roy G, Likhar AR, Asthana D. A supramolecular assembly-based strategy towards the generation and amplification of photon up-conversion and circularly polarized luminescence. NANOSCALE 2023; 15:18999-19015. [PMID: 37991436 DOI: 10.1039/d3nr04184k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
For the molecular properties in which energy transfer/migration is determinantal, such as triplet-triplet annihilation-based photon up-conversion (TTAUC), the overall performance is largely affected by the intermolecular distance and relative molecular orientations. In such scenarios, tools that may steer the intermolecular interactions and provide control over molecular organisation in the bulk, become most valuable. Often these non-covalent interactions, found predominantly in supramolecular assemblies, enable pre-programming of the molecular network in the assembled structures. In other words, by employing supramolecular chemistry principles, an arrangement where molecular units are arranged in a desired fashion, very much like a Lego toy, could be achieved. This leads to enhanced energy transfer from one molecule to other. In recent past, chiral luminescent systems have attracted huge attention for producing circularly polarized luminescence (CPL). In such systems, chirality is a necessary requirement. Chirality induction/transfer through supramolecular interactions has been known for a long time. It was realized recently that it may help in the generation and amplification of CPL signals as well. In this review article we have discussed the applicability of self-/co-assembly processes for achieving maximum TTA-UC and CPL in various molecular systems.
Collapse
Affiliation(s)
- Alisha Sengupta
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| | - Gargee Roy
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| | | | - Deepak Asthana
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| |
Collapse
|
18
|
Gong N, Lai R, Xing S, Liu Z, Mo J, Man T, Li Z, Di D, Du J, Tan D, Liu X, Qiu J, Xu B. Electronic State Engineering in Perovskite-Cerium-Composite Nanocrystals toward Enhanced Triplet Annihilation Upconversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305069. [PMID: 37870173 DOI: 10.1002/advs.202305069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/30/2023] [Indexed: 10/24/2023]
Abstract
Wavelength conversion based on hybrid inorganic-organic sensitized triplet-triplet annihilation upconversion (TTA-UC) is promising for applications such as photovoltaics, light-emitting-diodes, photocatalysis, additive manufacturing, and bioimaging. The efficiency of TTA-UC depends on the population of triplet excitons involved in triplet energy transfer (TET), the driving force in TET, and the coupling strength between the donor and acceptor. Consequently, achieving highly efficient TTA-UC necessitates the precise control of the electronic states of inorganic donors. However, conventional covalently bonded nanocrystals (NCs) face significant challenges in this regard. Herein, a novel strategy to exert control over electronic states is proposed, thereby enhancing TET and TTA-UC by incorporating ionic-bonded CsPbBr3 and lanthanide Ce3+ ions into composite NCs. These composite-NCs exhibit high photoluminescence quantum yield, extended single-exciton lifetime, quantum confinement, and uplifted energy levels. This engineering strategy of electronic states engendered a comprehensive impact, augmenting the population of triplet excitons participating in the TET process, enhancing coupling strength and the driving force, ultimately leading to an unconventional, dopant concentration-dependent nonlinear enhancement of UC efficiency. This work not only advances fundamental understanding of hybrid TTA-UC but also opens a door for the creation of other ionic-bonded composite NCs with tunable functionalities, promising innovations for next-generation optoelectronic applications.
Collapse
Affiliation(s)
- Nan Gong
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Runchen Lai
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Shiyu Xing
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - ZhengZheng Liu
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), 201800, Shanghai, China
| | - Junyao Mo
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Tao Man
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zicheng Li
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Dawei Di
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Juan Du
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), 201800, Shanghai, China
| | - Dezhi Tan
- Zhejiang Lab, 311100, Hangzhou, China
| | - Xiaofeng Liu
- College of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Jianrong Qiu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Beibei Xu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
19
|
Bangle RE, Li H, Mikkelsen MH. Uncovering the Mechanisms of Triplet-Triplet Annihilation Upconversion Enhancement via Plasmonic Nanocavity Tuning. ACS NANO 2023. [PMID: 38014847 DOI: 10.1021/acsnano.3c08915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The nonlinear conversion of photons from lower to higher energy is important for a wide range of applications, from quantum communications and optoelectronics to solar energy conversion and medicine. Triplet-triplet annihilation upconversion (TTA UC), which utilizes an absorber/emitter molecular pair, is a promising tool for upconversion applications requiring low intensity light such as photovoltaics, photocatalysis, and bioimaging. Despite demonstrations of efficient TTA UC in solution, practical applications have proven difficult, as thin films retard the necessary energy transfer steps and result in low emission yields. In this work, TTA UC emission from a thin film is greatly enhanced through integration into plasmonic nanogap cavities consisting of a silver mirror, a nanometer-scale polymer spacer containing a TTA molecular pair, and colloidally synthesized silver nanocubes. Mechanistic studies performed by varying the nanocube side length (45-150 nm) to tune the nanogap cavity resonance paired with simulations reveal absorption rate enhancement to be the primary operative mechanism in overall TTA UC emission enhancement. This absorption enhancement decreases the TTA UC threshold intensity by an order of magnitude and allows TTA UC emission to be excited with light up to 120 nm redder than the usable wavelength range for the control samples. Further, combined nanogap cavities composed of two distinct nanocube sizes result in surfaces which simultaneously enhance the absorption rate and emission rate. These dual-size nanogap cavities result in 45-fold TTA UC emission enhancement. In total, these studies present TTA UC emission enhancement, illustrate how the usable portion of the spectrum can be expanded for a given sensitizer-emitter pair, and develop both mechanistic understanding and design rules for TTA UC emission enhancement by plasmonic nanostructures.
Collapse
Affiliation(s)
- Rachel E Bangle
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Hengming Li
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Maiken H Mikkelsen
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
20
|
Bo Y, Hou Y, Thiel D, Weiß R, Clark T, Ferguson MJ, Tykwinski RR, Guldi DM. Tetracene Dimers: A Platform for Intramolecular Down- and Up-conversion. J Am Chem Soc 2023; 145:18260-18275. [PMID: 37531628 DOI: 10.1021/jacs.3c02417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Photon energy conversion can be accomplished in many different ways, including the two opposing manners, down-conversion (i.e., singlet fission, SF) and up-conversion (i.e., triplet-triplet annihilation up-conversion, TTA-UC). Both processes have the potential to help overcome the detailed balance limit of single-junction solar cells. Tetracene, in which the energies of the lowest singlet excited state and twice the triplet excited state are comparable, exhibits both down- and up-conversion. Here, we have designed meta-diethynylphenylene- and 1,3-diethynyladamantyl-linked tetracene dimers, which feature different electronic coupling, to characterize the interplay between intramolecular SF (intra-SF) and intramolecular TTA-UC (intra-TTA-UC) via steady-state and time-resolved absorption and fluorescence spectroscopy. Furthermore, we have used Pd-phthalocyanine as a sensitizer to enable intra-TTA-UC in the two dimers via indirect photoexcitation in the near-infrared part of the solar spectrum. The work is rounded off by temperature-dependent measurements, which outline key aspects of how thermal effects impact intra-SF and intra-TTA-UC in different dimers.
Collapse
Affiliation(s)
- Yifan Bo
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Yuxuan Hou
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Dominik Thiel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - René Weiß
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy & Computer-Chemie-Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Rik R Tykwinski
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
21
|
Pattadar D, Arcidiacono A, Beery D, Hanson K, Saavedra SS. Molecular Orientation and Energy Transfer Dynamics of a Metal Oxide Bound Self-Assembled Trilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10670-10679. [PMID: 37466635 DOI: 10.1021/acs.langmuir.3c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Self-assembly of molecular multilayers via metal ion linkages has become an important strategy for interfacial engineering of metalloid and metal oxide (MOx) substrates, with applications in numerous areas, including energy harvesting, catalysis, and chemical sensing. An important aspect for the rational design of these multilayers is knowledge of the molecular structure-function relationships. For example, in a multilayer composed of different chromophores in each layer, the molecular orientation of each layer, both relative to the adjacent layers and the substrate, influences the efficiency of vectorial energy and electron transfer. Here, we describe an approach using UV-vis attenuated total reflection (ATR) spectroscopy to determine the mean dipole tilt angle of chromophores in each layer in a metal ion-linked trilayer self-assembled on indium-tin oxide. To our knowledge, this is the first report demonstrating the measurement of the orientation of three different chromophores in a single assembly. The ATR approach allows the adsorption of each layer to be monitored in real-time, and any changes in the orientation of an underlying layer arising from the adsorption of an overlying layer can be detected. We also performed transient absorption spectroscopy to monitor interlayer energy transfer dynamics in order to relate structure to function. We found that near unity efficiency, sub-nanosecond energy transfer between the third and second layer was primarily dictated by the distance between the chromophores. Thus, in this case, the orientation had minimal impact at such proximity.
Collapse
Affiliation(s)
- Dhruba Pattadar
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Ashley Arcidiacono
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Drake Beery
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Kenneth Hanson
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - S Scott Saavedra
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
22
|
Edhborg F, Olesund A, Tripathy V, Wang Y, Sadhukhan T, Olsson AH, Bisballe N, Raghavachari K, Laursen BW, Albinsson B, Flood AH. Triplet States of Cyanostar and Its Anion Complexes. J Phys Chem A 2023. [PMID: 37427990 DOI: 10.1021/acs.jpca.3c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The design of advanced optical materials based on triplet states requires knowledge of the triplet energies of the molecular building blocks. To this end, we report the triplet energy of cyanostar (CS) macrocycles, which are the key structure-directing units of small-molecule ionic isolation lattices (SMILES) that have emerged as programmable optical materials. Cyanostar is a cyclic pentamer of covalently linked cyanostilbene units that form π-stacked dimers when binding anions as 2:1 complexes. The triplet energies, ET, of the parent cyanostar and its 2:1 complex around PF6- are measured to be 1.96 and 2.02 eV, respectively, using phosphorescence quenching studies at room temperature. The similarity of these triplet energies suggests that anion complexation leaves the triplet energy relatively unchanged. Similar energies (2.0 and 1.98 eV, respectively) were also obtained from phosphorescence spectra of the iodinated form, I-CS, and of complexes formed with PF6- and IO4- recorded at 85 K in an organic glass. Thus, measures of the triplet energies likely reflect geometries close to those of the ground state either directly by triplet energy transfer to the ground state or indirectly by using frozen media to inhibit relaxation. Density functional theory (DFT) and time-dependent DFT were undertaken on a cyanostar analogue, CSH, to examine the triplet state. The triplet excitation localizes on a single olefin whether in the single cyanostar or its π-stacked dimer. Restriction of the geometrical changes by forming either a dimer of macrocycles, (CSH)2, or a complex, (CSH)2·PF6-, reduces the relaxation resulting in an adiabatic energy of the triplet state of 2.0 eV. This structural constraint is also expected for solid-state SMILES materials. The obtained T1 energy of 2.0 eV is a key guide line for the design of SMILES materials for the manipulation of triplet excitons by triplet state engineering in the future.
Collapse
Affiliation(s)
- Fredrik Edhborg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Axel Olesund
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Vikrant Tripathy
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yang Wang
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Tumpa Sadhukhan
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Andrew H Olsson
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Niels Bisballe
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Bo W Laursen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Amar H Flood
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
23
|
Knorr ES, Basquill CT, Bertini IA, Arcidiacono A, Beery D, Wheeler JP, Winfred JSRV, Strouse GF, Hanson K. Influence of Al 2O 3 Overlayers on Intermolecular Interactions between Metal Oxide Bound Molecules. Molecules 2023; 28:4835. [PMID: 37375390 DOI: 10.3390/molecules28124835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Intermolecular interactions on inorganic substrates can have a critical impact on the electrochemical and photophysical properties of the materials and subsequent performance in hybrid electronics. Critical to the intentional formation or inhibition of these processes is controlling interactions between molecules on a surface. In this report, we investigated the impact of surface loading and atomic-layer-deposited Al2O3 overlayers on the intermolecular interactions of a ZrO2-bound anthracene derivative as probed by the photophysical properties of the interface. While surface loading density had no impact on the absorption spectra of the films, there was an increase in excimer features with surface loading as observed by both emission and transient absorption. The addition of ALD overlayers of Al2O3 resulted in a decrease in excimer formation, but the emission and transient absorption spectra were still dominated by excimer features. These results suggest that ALD may provide a post-surface loading means of influencing such intermolecular interactions.
Collapse
Affiliation(s)
- Erica S Knorr
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Cody T Basquill
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Isabella A Bertini
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Ashley Arcidiacono
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Drake Beery
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Jonathan P Wheeler
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - J S Raaj Vellore Winfred
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Geoffrey F Strouse
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Kenneth Hanson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| |
Collapse
|
24
|
Schloemer T, Narayanan P, Zhou Q, Belliveau E, Seitz M, Congreve DN. Nanoengineering Triplet-Triplet Annihilation Upconversion: From Materials to Real-World Applications. ACS NANO 2023; 17:3259-3288. [PMID: 36800310 DOI: 10.1021/acsnano.3c00543] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Using light to control matter has captured the imagination of scientists for generations, as there is an abundance of photons at our disposal. Yet delivering photons beyond the surface to many photoresponsive systems has proven challenging, particularly at scale, due to light attenuation via absorption and scattering losses. Triplet-triplet annihilation upconversion (TTA-UC), a process which allows for low energy photons to be converted to high energy photons, is poised to overcome these challenges by allowing for precise spatial generation of high energy photons due to its nonlinear nature. With a wide range of sensitizer and annihilator motifs available for TTA-UC, many researchers seek to integrate these materials in solution or solid-state applications. In this Review, we discuss nanoengineering deployment strategies and highlight their uses in recent state-of-the-art examples of TTA-UC integrated in both solution and solid-state applications. Considering both implementation tactics and application-specific requirements, we identify critical needs to push TTA-UC-based applications from an academic curiosity to a scalable technology.
Collapse
Affiliation(s)
- Tracy Schloemer
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Pournima Narayanan
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Qi Zhou
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Emma Belliveau
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Michael Seitz
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Daniel N Congreve
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
25
|
Goudarzi H, Koutsokeras L, Balawi AH, Sun C, Manolis GK, Gasparini N, Peisen Y, Antoniou G, Athanasopoulos S, Tselios CC, Falaras P, Varotsis C, Laquai F, Cabanillas-González J, Keivanidis PE. Microstructure-driven annihilation effects and dispersive excited state dynamics in solid-state films of a model sensitizer for photon energy up-conversion applications. Chem Sci 2023; 14:2009-2023. [PMID: 36845913 PMCID: PMC9945257 DOI: 10.1039/d2sc06426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Bimolecular processes involving exciton spin-state interactions gain attention for their deployment as wavelength-shifting tools. Particularly triplet-triplet annihilation induced photon energy up-conversion (TTA-UC) holds promise to enhance the performance of solar cell and photodetection technologies. Despite the progress noted, a correlation between the solid-state microstructure of photoactuating TTA-UC organic composites and their photophysical properties is missing. This lack of knowledge impedes the effective integration of functional TTA-UC interlayers as ancillary components in operating devices. We here investigate a solution-processed model green-to-blue TTA-UC binary composite. Solid-state films of a 9,10 diphenyl anthracene (DPA) blue-emitting activator blended with a (2,3,7,8,12,13,17,18-octaethyl-porphyrinato) PtII (PtOEP) green-absorbing sensitizer are prepared with a range of compositions and examined by a set of complementary characterization techniques. Grazing incidence X-ray diffractometry (GIXRD) measurements identify three PtOEP composition regions wherein the DPA:PtOEP composite microstructure varies due to changes in the packing motifs of the DPA and PtOEP phases. In Region 1 (≤2 wt%) DPA is semicrystalline and PtOEP is amorphous, in Region 2 (between 2 and 10 wt%) both DPA and PtOEP phases are amorphous, and in Region 3 (≥10 wt%) DPA remains amorphous and PtOEP is semicrystalline. GIXRD further reveals the metastable DPA-β polymorph species as the dominant DPA phase in Region 1. Composition dependent UV-vis and FT-IR measurements identify physical PtOEP dimers, irrespective of the structural order in the PtOEP phase. Time-gated photoluminescence (PL) spectroscopy and scanning electron microscopy imaging confirm the presence of PtOEP aggregates, even after dispersing DPA:PtOEP in amorphous poly(styrene). When arrested in Regions 1 and 2, DPA:PtOEP exhibits delayed PtOEP fluorescence at 580 nm that follows a power-law decay on the ns time scale. The origin of PtOEP delayed fluorescence is unraveled by temperature- and fluence-dependent PL experiments. Triplet PtOEP excitations undergo dispersive diffusion and enable TTA reactions that activate the first singlet-excited (S1) PtOEP state. The effect is reproduced when PtOEP is mixed with a poly(fluorene-2-octyl) (PFO) derivative. Transient absorption measurements on PFO:PtOEP films find that selective PtOEP photoexcitation activates the S1 of PFO within ∼100 fs through an up-converted 3(d, d*) PtII-centered state.
Collapse
Affiliation(s)
- Hossein Goudarzi
- Centre for Nano Science and Technology @PoliMi, Fondazione Istituto Italiano di Tecnologia 20133 Milano Italy
| | - Loukas Koutsokeras
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| | - Ahmed H Balawi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) 23955-6900 Thuwal Kingdom of Saudi Arabia
| | - Chen Sun
- IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco Calle Faraday 9 ES 28049 Madrid Spain
| | - Giorgos K Manolis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos" 15341 Agia Paraskevi Athens Greece
| | - Nicola Gasparini
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) 23955-6900 Thuwal Kingdom of Saudi Arabia
- Department of Chemistry, Centre for Processable Electronics, Imperial College London W120BZ UK
| | - Yuan Peisen
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| | - Giannis Antoniou
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| | | | - Charalampos C Tselios
- Environmental Biocatalysis and Biotechnology Laboratory, Department of Chemical Engineering, Cyprus University of Technology 3603 Limassol Cyprus
| | - Polycarpos Falaras
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos" 15341 Agia Paraskevi Athens Greece
| | - Constantinos Varotsis
- Environmental Biocatalysis and Biotechnology Laboratory, Department of Chemical Engineering, Cyprus University of Technology 3603 Limassol Cyprus
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) 23955-6900 Thuwal Kingdom of Saudi Arabia
| | | | - Panagiotis E Keivanidis
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| |
Collapse
|
26
|
Recent Advances in the Photoreactions Triggered by Porphyrin-Based Triplet–Triplet Annihilation Upconversion Systems: Molecular Innovations and Nanoarchitectonics. Int J Mol Sci 2022; 23:ijms23148041. [PMID: 35887385 PMCID: PMC9323209 DOI: 10.3390/ijms23148041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Triplet–triplet annihilation upconversion (TTA-UC) is a very promising technology that could be used to convert low-energy photons to high-energy ones and has been proven to be of great value in various areas. Porphyrins have the characteristics of high molar absorbance, can form a complex with different metal ions and a high proportion of triplet states as well as tunable structures, and thus they are important sensitizers for TTA-UC. Porphyrin-based TTA-UC plays a pivotal role in the TTA-UC systems and has been widely used in many fields such as solar cells, sensing and circularly polarized luminescence. In recent years, applications of porphyrin-based TTA-UC systems for photoinduced reactions have emerged, but have been paid little attention. As a consequence, this review paid close attention to the recent advances in the photoreactions triggered by porphyrin-based TTA-UC systems. First of all, the photochemistry of porphyrin-based TTA-UC for chemical transformations, such as photoisomerization, photocatalytic synthesis, photopolymerization, photodegradation and photochemical/photoelectrochemical water splitting, was discussed in detail, which revealed the different mechanisms of TTA-UC and methods with which to carry out reasonable molecular innovations and nanoarchitectonics to solve the existing problems in practical application. Subsequently, photoreactions driven by porphyrin-based TTA-UC for biomedical applications were demonstrated. Finally, the future developments of porphyrin-based TTA-UC systems for photoreactions were briefly discussed.
Collapse
|
27
|
Abstract
Triplet-triplet annihilation (TTA) is a spin-allowed conversion of two triplet states into one singlet excited state, which provides an efficient route to generate a photon of higher frequency than the incident light. Multiple energy transfer steps between absorbing (sensitizer) and emitting (annihilator) molecular species are involved in the TTA based photon upconversion process. TTA compounds have recently been studied for solar energy applications, even though the maximum upconversion efficiency of 50 % is yet to be achieved. With the aid of quantum calculations and based on a few key requirements, several design principles have been established to develop the well-functioning annihilators. However, a complete molecular level understanding of triplet fusion dynamics is still missing. In this work, we have employed multi-reference electronic structure methods along with quantum dynamics to obtain a detailed and fundamental understanding of TTA mechanism in naphthalene. Our results suggest that the TTA process in naphthalene is mediated by conical intersections. In addition, we have explored the triplet fusion dynamics under the influence of strong light-matter coupling and found an increase of the TTA based upconversion efficiency.
Collapse
Affiliation(s)
- Mahesh Gudem
- Department of PhysicsStockholm UniversityAlbanova University CentreSE-106 91StockholmSweden
| | - Markus Kowalewski
- Department of PhysicsStockholm UniversityAlbanova University CentreSE-106 91StockholmSweden
| |
Collapse
|
28
|
Best practice in determining key photophysical parameters in triplet-triplet annihilation photon upconversion. Photochem Photobiol Sci 2022; 21:1143-1158. [PMID: 35441266 DOI: 10.1007/s43630-022-00219-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
Triplet-triplet annihilation photon upconversion (TTA-UC) is a process in which low-energy light is transformed into light of higher energy. During the last two decades, it has gained increasing attention due to its potential in, e.g., biological applications and solar energy conversion. The highest efficiencies for TTA-UC systems have been achieved in liquid solution, owing to that several of the intermediate steps require close contact between the interacting species, something that is more easily achieved in diffusion-controlled environments. There is a good understanding of the kinetics dictating the performance in liquid TTA-UC systems, but so far, the community lacks cohesiveness in terms of how several important parameters are best determined experimentally. In this perspective, we discuss and present a "best practice" for the determination of several critical parameters in TTA-UC, namely triplet excited state energies, rate constants for triplet-triplet annihilation ([Formula: see text]), triplet excited-state lifetimes ([Formula: see text]), and excitation threshold intensity ([Formula: see text]). Finally, we introduce a newly developed method by which [Formula: see text], [Formula: see text], and [Formula: see text] may be determined simultaneously using the same set of time-resolved emission measurements. The experiment can be performed with a simple experimental setup, be ran under mild excitation conditions, and entirely circumvents the need for more challenging nanosecond transient absorption measurements, a technique that previously has been required to extract [Formula: see text]. Our hope is that the discussions and methodologies presented herein will aid the photon upconversion community in performing more efficient and manageable experiments while maintaining-and sometimes increasing-the accuracy and validity of the extracted parameters.
Collapse
|
29
|
Gao C, Wong WWH, Qin Z, Lo SC, Namdas EB, Dong H, Hu W. Application of Triplet-Triplet Annihilation Upconversion in Organic Optoelectronic Devices: Advances and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100704. [PMID: 34596295 DOI: 10.1002/adma.202100704] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Organic semiconductor materials have been widely used in various optoelectronic devices due to their rich optical and/or electrical properties, which are highly related to their excited states. Therefore, how to manage and utilize the excited states in organic semiconductors is essential for the realization of high-performance optoelectronic devices. Triplet-triplet annihilation (TTA) upconversion is a unique process of converting two non-emissive triplet excitons to one singlet exciton with higher energy. Efficient optical-to-electrical devices can be realized by harvesting sub-bandgap photons through TTA-based upconversion. In electrical-to-optical devices, triplets generated after the combination of electrons and holes also can be efficiently utilized via TTA, which resulted in a high internal conversion efficiency of 62.5%. Currently, many interesting explorations and significant advances have been demonstrated in these fields. In this review, a comprehensive summary of these intriguing advances on developing efficient TTA upconversion materials and their application in optoelectronic devices is systematically given along with some discussions. Finally, the key challenges and perspectives of TTA upconversion systems for further improvement for optoelectronic devices and other related research directions are provided. This review hopes to provide valuable guidelines for future related research and advancement in organic optoelectronics.
Collapse
Affiliation(s)
- Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wallace W H Wong
- ARC Centre of Excellence in Exciton Science, School of Chemistry, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Zhengsheng Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shih-Chun Lo
- Centre for Organic Photonics and Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ebinazar B Namdas
- Centre for Organic Photonics & Electronics, School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|