1
|
Moon J, Mehta Y, Gundogdu K, So F, Gu Q. Metal-Halide Perovskite Lasers: Cavity Formation and Emission Characteristics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211284. [PMID: 36841548 DOI: 10.1002/adma.202211284] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Hybrid metal-halide perovskites (MHPs) have shown remarkable optoelectronic properties as well as facile and cost-effective processability. With the success of MHP solar cells and light-emitting diodes, MHPs have also exhibited great potential as gain media for on-chip lasers. However, to date, stable operation of optically pumped MHP lasers and electrically driven MHP lasers-an essential requirement for MHP laser's insertion into chip-scale photonic integrated circuits-is not yet demonstrated. The main obstacles include the instability of MHPs in the atmosphere, rudimentary MHP laser cavity patterning methods, and insufficient understanding of emission mechanisms in MHP materials and cavities. This review aims to provide a detailed overview of different strategies to improve the intrinsic properties of MHPs in the atmosphere and to establish an optimal MHP cavity patterning method. In addition, this review discusses different emission mechanisms in MHP materials and cavities and how to distinguish them.
Collapse
Affiliation(s)
- Jiyoung Moon
- Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yash Mehta
- Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Kenan Gundogdu
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
- Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Franky So
- Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Qing Gu
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
- Physics, North Carolina State University, Raleigh, NC, 27695, USA
- Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
2
|
Liu X, Xu C, Zhao H. Enhanced Photoluminescence and Random Lasing Emission in TiO 2-Decorated FAPbBr 3 Thin Films. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111761. [PMID: 37299664 DOI: 10.3390/nano13111761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Herein, titanium-dioxide-decorated organic formamidinium lead bromide perovskite thin films grown by the one-step spin-coating method are studied. TiO2 nanoparticles are widespread in FAPbBr3 thin films, which changes the optical properties of the perovskite thin films effectively. Obvious reductions in the absorption and enhancements in the intensity of the photoluminescence spectra are observed. Over 6 nm, a blueshift of the photoluminescence emission peaks is observed due to 5.0 mg/mL TiO2 nanoparticle decoration in the thin films, which originates from the variation in the grain sizes of the perovskite thin films. Light intensity redistributions in perovskite thin films are measured by using a home-built confocal microscope, and the multiple scattering and weak localization of light are analyzed based on the scattering center of TiO2 nanoparticle clusters. Furthermore, random lasing emission with sharp emission peaks is achieved in the scattering perovskite thin films with a full width at the half maximum of 2.1 nm. The multiple scattering of light, the random reflection and reabsorption of light, and the coherent interaction of light within the TiO2 nanoparticle clusters play important roles in random lasing. This work could be used to improve the efficiency of photoluminescence and random lasing emissions, and it is promising in high-performance optoelectrical devices.
Collapse
Affiliation(s)
- Xiaohong Liu
- Chongqing University, Shapingba, Chongqing 400044, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Caixia Xu
- School of Primary Education, Chongqing Normal University, Chongqing 400700, China
| | - Hongquan Zhao
- Chongqing University, Shapingba, Chongqing 400044, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
3
|
Qiao BS, Wang SY, Zhang ZH, Lian ZD, Zheng ZY, Wei ZP, Li L, Ng KW, Wang SP, Liu ZB. Photosensitive Dielectric 2D Perovskite Based Photodetector for Dual Wavelength Demultiplexing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300632. [PMID: 36916201 DOI: 10.1002/adma.202300632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/28/2023] [Indexed: 05/26/2023]
Abstract
Stacked 2D perovskites provide more possibilities for next generation photodetector with more new features. Compared with its excellent optoelectronic properties, the good dielectric performance of metal halide perovskite rarely comes into notice. Here, a bifunctional perovskite based photovoltaic detector capable of two wavelength demultiplexing is demonstrated. In the Black Phosphorus/Perovskite/MoS2 structured photodetector, the comprehensive utilization of the photosensitive and dielectric properties of 2D perovskite allows the device to work in different modes. The device shows normal continuous photoresponse under 405 nm, while it shows a transient spike response to visible light with longer wavelengths. The linear dynamic range, rise/decay time, and self-powered responsivity under 405 nm can reach 100, 38 µs/50 µs, and 17.7 mA W-1 , respectively. It is demonstrated that the transient spike photocurrent with long wavelength exposure is related to the illumination intensity and can coexist with normal photoresponse. Two waveband-dependent signals can be identified and used to reflect more information simultaneously. This work provides a new strategy for multispectral detection and demultiplexing, which can be used to improve data transfer rates and encrypted communications. This work mode can inspire more multispectral photodetectors with different stacked 2D materials, especially to the optoelectronic application of the wide bandgap, high dielectric photosensitive materials.
Collapse
Affiliation(s)
- Bao-Shi Qiao
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China
| | - Su-Yun Wang
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi-Hong Zhang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China
- State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Zhen-Dong Lian
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China
| | - Zhi-Yao Zheng
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun, 130033, P. R. China
| | - Zhi-Peng Wei
- State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Lin Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics & Electron Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Kar Wei Ng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China
| | - Shuang-Peng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China
| | - Zhi-Bo Liu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
4
|
An HX, Qiao BS, Zhang ZH, Lian ZD, Wei Z, Li XS, Zeng QG, Wang B, Ng KW, Wang SP. Ultraviolet photodetector based on RbCu 2I 3microwire. NANOTECHNOLOGY 2023; 34:145402. [PMID: 36621847 DOI: 10.1088/1361-6528/acb0d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Copper-based halide perovskites have shown great potential in lighting and photodetection due to their excellent photoelectric properties, good stability and lead-free nature. However, as an important piece of copper-based perovskites, the synthesis and application of RbCu2I3have never been reported. Here, we demonstrate the synthesis of high-quality RbCu2I3microwires (MWs) by a fast-cooling hot saturated solution method. The prepared MWs exhibit an orthorhombic structure with a smooth surface. Optical measurements show the RbCu2I3MWs have a sharp ultraviolet absorption edge with 3.63 eV optical band gap and ultra-large stokes shift (300 nm) in photoluminescence. The subsequent photodetector based on a single RbCu2I3MW shows excellent ultraviolet detection performance. Under the 340 nm illumination, the device shows a specific detectivity of 5.0 × 109Jones and a responsivity of 380 mA·W-1. The synthesis method and physical properties of RbCu2I3could be a guide to the future optoelectronic application of the new material.
Collapse
Affiliation(s)
- Hong-Xiang An
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, Macao SAR 999078, People's Republic of China
| | - Bao-Shi Qiao
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, Macao SAR 999078, People's Republic of China
| | - Zhi-Hong Zhang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, Macao SAR 999078, People's Republic of China
- State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, Jilin 130022, People's Republic of China
| | - Zhen-Dong Lian
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, Macao SAR 999078, People's Republic of China
| | - Zhipeng Wei
- State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, Jilin 130022, People's Republic of China
| | - Xiao-Shuang Li
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Qing-Guang Zeng
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Bo Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Kar Wei Ng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, Macao SAR 999078, People's Republic of China
| | - Shuang-Peng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, Macao SAR 999078, People's Republic of China
| |
Collapse
|
5
|
Chang J, Wu Q, Gao CH, Huang Y, Ju M, Wang G, Yuan H, Chen H. A Hybrid Functional Study on Perovskite-Based Compounds CsPb 1-αZn αI 3-βX β (X = Cl or Br). J Phys Chem Lett 2022; 13:5900-5909. [PMID: 35729749 DOI: 10.1021/acs.jpclett.2c01239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inorganic perovskites have attracted a great deal of attention because of their stability. Unfortunately, a weak optical response and the toxicity of lead are hampering their development. Motivated by these facts, we focus herein on the perovskite-based doped series CsPb1-αZnαI3-βXβ (X = Cl or Br). The geometric structures and the electronic and optical properties of CsPb1-αZnαI3-βXβ (X = Cl or Br) are investigated systematically by hybrid functional theory. Analysis of the electronic properties indicates that Zn/Cl/Br mono-doping and co-doping efficiently tune bandgaps. Moreover, we find that the ability to obtain electrons for CsPb0.625Zn0.375I2Cl is superior to the abilities of the others, which implies a stronger electron transition. In addition, CsPb0.625Zn0.375I2Cl and CsPb0.625Zn0.375I2Br show stronger visible-light responses in the range of 467-780 nm. Both CsPb0.625Zn0.375I2Cl and CsPb0.625Zn0.375I2Br are hence good choices for photovoltaic applications. Furthermore, the physically accessible region is also explored herein. These findings shed new light on the design of highly efficient and low-lead perovskite-based optoelectronic materials.
Collapse
Affiliation(s)
- Junli Chang
- School of Physical Science and Technology, Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, People's Republic of China
| | - Qi Wu
- School of Physical Science and Technology, Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, People's Republic of China
| | - Chun-Hong Gao
- School of Physical Science and Technology, Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, People's Republic of China
| | - Yuhong Huang
- School of Physical Science and Technology, Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, People's Republic of China
| | - Meng Ju
- School of Physical Science and Technology, Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, People's Republic of China
| | - Guangzhao Wang
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, People's Republic of China
| | - Hongkuan Yuan
- School of Physical Science and Technology, Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, People's Republic of China
| | - Hong Chen
- School of Physical Science and Technology, Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
6
|
Ren RY, Su CY, Shao T, Zhang ZX, Huang PZ, Zhang Y, Jia QQ, Fu DW. Dehydration-activated structural phase transition in a two-dimensional hybrid double perovskite. Dalton Trans 2022; 51:7783-7789. [PMID: 35575045 DOI: 10.1039/d2dt00991a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a feasible lead-free scheme, organic-inorganic hybrid double perovskites show many excellent properties, including ferroelectricity, ferroelasticity, self-powered circularly polarized light detection and so on. In this work, the solid-to-solid structural phase transition of a two-dimensional hybrid double perovskite (CHA)4CuBiI8 was successfully activated via the dehydration of (CHA)4CuBiI8·H2O, which was proven by differential scanning calorimetry (DSC) and temperature-dependent dielectric measurements. Using variable-temperature single-crystal X-ray diffractometry, the cause behind the phase transition of (CHA)4CuBiI8 was determined to be the overall coordination of distortion and movement of the inorganic skeleton and thermal deformation of the cationic structure. In addition, the substance after dehydration shows good stability in multiple reversible switching during dielectric tests. The interesting dehydration-activated results of the material contribute towards a further expansion of the properties and potential application of hybrid double perovskites.
Collapse
Affiliation(s)
- Rui-Ying Ren
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Chang-Yuan Su
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China. .,Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, People's Republic of China
| | - Ting Shao
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Zhi-Xu Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, People's Republic of China
| | - Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Yi Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, People's Republic of China
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| |
Collapse
|