1
|
Hong Y, Zou H, Hu Y, Fei F, Liang L, Liu D, Han Y, Lin Q. Design of foldable, responsively drug-eluting polyacrylic intraocular lens bulk materials for prevention of postoperative complications. J Mater Chem B 2022; 10:8398-8406. [PMID: 36250493 DOI: 10.1039/d2tb01974d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Posterior capsular opacification (PCO), resulting from undesired intracapsular cell proliferation, is the most common complication of intraocular lens (IOL) implantation after cataract surgery. In recent years, IOLs have been developed into a drug delivery platform. Compared with traditional eye drops, drug-loaded IOLs have the characteristics of independent patient compliance and no other operation except surgical implantation. In this work, a series of poly(glycidyl methacrylate-co-2-(2-ethoxyethoxy)ethyl acrylate) (PGE) acrylic intraocular lens materials were synthesized as drug delivery platforms. The PGE synthesized with 10% crosslinking agent has excellent optical, foldable, and thermomechanical properties. An aldehyde group was subsequently introduced into the PGE chains, and an antiproliferative drug (doxorubicin) was immobilized onto the PGE chains via an H+-sensitive imine bond. The IOL exhibits H+-dependent Dox release behavior in a simulated pathological environment. The in vitro and in vivo systematical evaluations indicate that such a responsively drug-eluting PGE IOL can effectively prevent PCO.
Collapse
Affiliation(s)
- Yueze Hong
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Haoyu Zou
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Yulin Hu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Fan Fei
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Lin Liang
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Dong Liu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Yuemei Han
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Quankui Lin
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| |
Collapse
|
2
|
Kitayama Y, Dosaka A, Harada A. Interfacial photocrosslinking of polymer particles possessing nucleobase photoreactive groups for hollow/capsule polymer fabrication. Polym Chem 2022. [DOI: 10.1039/d1py01438b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, polystyrene-based particles possessing nucleobases in polymer side chains were prepared and nucleobase groups were applied to the interfacial photocrosslinking as photoreactive groups for the first time for fabricating hollow/capsule particles.
Collapse
Affiliation(s)
- Yukiya Kitayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Akali Dosaka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
3
|
Kitayama Y, Harada A. Carboxy-Functionalized pH Responsive Capsule Polymer Particles Fabricated by Particulate Interfacial Photocrosslinking. J Mater Chem B 2022; 10:7570-7580. [DOI: 10.1039/d1tb02866a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
pH-responsive capsule particles show promise for various applications, such as self-healing materials, micro/nanoreactors, and drug delivery systems. Herein, carboxy-functionalized capsule polymer particles possessing neutral-alkali pH responsive controlled release capability were...
Collapse
|