1
|
Sahoo RC, Sahoo P, Mohanta MK, Jena P, Matte HSSR. Solution Processing of Spinel Nickel Cobaltite: Exfoliation Mechanism, Dispersion Stability, and Applications. Inorg Chem 2024; 63:7838-7847. [PMID: 38635967 DOI: 10.1021/acs.inorgchem.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The exfoliation of nonlayered materials to mono- or few-layers is of growing interest to realize their full potential for various applications. Nickel cobaltite (NiCo2O4), which has a spinel crystal structure, is one such nonlayered material with unique properties and has been utilized in a wide range of applications. Herein, NiCo2O4 is synthesized from NiCo2- Layered double hydroxides using a topochemical conversion technique. Subsequently, bulk NiCo2O4 is exfoliated into mono- or few-layer nickel cobaltene nanosheets using liquid-phase exfoliation in various low-boiling point solvents. An analytical centrifuge technique is also utilized to understand the solute-solvent interactions by determining their dispersion stability using parameters such as the instability index and sedimentation velocity. Among the studied solvents, water/isopropyl alcohol cosolvent is found to have better dispersion stability. In addition, density functional theory calculations are carried out to understand the exfoliation mechanism. It is found that the surface termination arising from the Co-O bond needs the least energy for exfoliation. Furthermore, the obtained nickel cobaltene nanosheets are utilized as an active material for supercapacitors without any conductive additives or binders. A solid-state symmetric supercapacitor delivers a specific capacitance of 10.2 mF cm-2 with robust stability, retaining ∼98% capacitance after 4000 cycles.
Collapse
Affiliation(s)
- Ramesh Chandra Sahoo
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Bangalore 562162, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Priyabrata Sahoo
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Bangalore 562162, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Manish Kumar Mohanta
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - H S S Ramakrishna Matte
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Bangalore 562162, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| |
Collapse
|
2
|
Jian ZB, Wu CH, Chen S. First-Principles Study on Out-of-Plane Piezoelectricity of Self-Assembled Ammonia Layers Confined in Two Vertically Stacked Graphene Oxide Nanosheets. J Phys Chem Lett 2023; 14:10129-10136. [PMID: 37922336 DOI: 10.1021/acs.jpclett.3c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Two-dimensional (2D) piezoelectric materials have attracted widespread attention due to their increasingly important niche applications in flexible nanoscale devices. The water-wetted graphene oxide papers exhibit scalable out-of-plane piezoelectricity induced by the hydrogen-bonded network within, and this system can be treated as a potential 2D piezoelectric candidate for future device applications. It triggered our interest to search for more 2D piezoelectric hydrogen-bonded networks. Ammonia (NH3) isoelectronic with water is introduced to generate NH3-wetted graphene oxide papers and realize their out-of-plane piezoelectricity. Their structures and piezoelectricity are investigated using first-principles calculations. They reveal ultrahigh piezoelectricity, compared to the best reported 2D materials. Their piezoelectricity is tuned by varying oxygen-containing functional groups in GO plates, confined NH3 layers, or orientations of NH3 molecules, and it could be applied to fabrication of ammonia sensors. Our study not only enriches the family of 2D piezoelectric nanosystems but also inspires their future experimental exploration.
Collapse
Affiliation(s)
- Zhi-Bin Jian
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Chen-Hua Wu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Shuang Chen
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
3
|
Bahadur J, Ryu J, Cho S, Yoon S, Lee DG, Kang DW, Pandey P. Controlled Crystal Growth of All-Inorganic CsPbI 2.2Br 0.8 Thin Film via Additive Strategy for Air-Processed Efficient Outdoor/Indoor Perovskite Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2716. [PMID: 37836357 PMCID: PMC10574290 DOI: 10.3390/nano13192716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
The evolution of defects during perovskite film fabrication deteriorates the overall film quality and adversely affects the device efficiency of perovskite solar cells (PSCs). We endeavored to control the formation of defects by applying an additive engineering strategy using FABr, which retards the crystal growth formation of CsPbI2.2Br0.8 perovskite by developing an intermediate phase at the initial stage. Improved crystalline and pinhole-free perovskite film with an optimal concentration of FABr-0.8M% additive was realized through crystallographic and microscopic analysis. Suppressed non-radiative recombination was observed through photoluminescence with an improved lifetime of 125 ns for FABr-0.8M% compared to the control film (83 ns). The champion device efficiency of 17.95% was attained for the FABr-0.8M% PSC, while 15.94% efficiency was achieved in the control PSC under air atmospheric conditions. Furthermore, an impressively high indoor performance of 31.22% was achieved for the FABr-0.8M% PSC under 3200 K (1000 lux) LED as compared to the control (23.15%). With a realistic approach of air processing and controlling the crystallization kinetics in wide-bandgap halide PSCs, this investigation paves the way for implementing additive engineering strategies to reduce defects in halide perovskites, which can further benefit efficiency enhancements in outdoor and indoor applications.
Collapse
Affiliation(s)
- Jitendra Bahadur
- Department of Energy Systems Engineering, Chung-Ang University, Seoul 06974, Republic of Korea;
| | - Jun Ryu
- Department of Smart Cities, Chung-Ang University, Seoul 06974, Republic of Korea; (J.R.); (S.C.); (S.Y.); (D.-G.L.)
| | - SungWon Cho
- Department of Smart Cities, Chung-Ang University, Seoul 06974, Republic of Korea; (J.R.); (S.C.); (S.Y.); (D.-G.L.)
| | - Saemon Yoon
- Department of Smart Cities, Chung-Ang University, Seoul 06974, Republic of Korea; (J.R.); (S.C.); (S.Y.); (D.-G.L.)
| | - Dong-Gun Lee
- Department of Smart Cities, Chung-Ang University, Seoul 06974, Republic of Korea; (J.R.); (S.C.); (S.Y.); (D.-G.L.)
| | - Dong-Won Kang
- Department of Energy Systems Engineering, Chung-Ang University, Seoul 06974, Republic of Korea;
- Department of Smart Cities, Chung-Ang University, Seoul 06974, Republic of Korea; (J.R.); (S.C.); (S.Y.); (D.-G.L.)
| | - Padmini Pandey
- Department of Smart Cities, Chung-Ang University, Seoul 06974, Republic of Korea; (J.R.); (S.C.); (S.Y.); (D.-G.L.)
| |
Collapse
|
4
|
Kashikar R, Popoola A, Lisenkov S, Stroppa A, Ponomareva I. Persistent and Quasipersistent Spin Textures in Halide Perovskites Induced by Uniaxial Stress. J Phys Chem Lett 2023; 14:8541-8547. [PMID: 37724873 DOI: 10.1021/acs.jpclett.3c02248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Persistent spin textures are highly desirable for applications in spintronics, as they allow for long carrier spin lifetimes. However, they are also rare, as they require a delicate balance between spin-momentum coupling parameters. We used density functional theory simulations to predict the possibility of achieving these desirable spin textures through the application of uniaxial stress. Hybrid organic-inorganic perovskite MPSnBr3 (MP = CH3PH3) is a ferroelectric semiconductor which exhibits persistent spin textures near its conduction band minimum and mostly Rashba type spin textures in the vicinity of its valence band maximum. Application of uniaxial stress leads to the gradual evolution of the valence band spin textures from mostly Rashba type to quasipersistent ones under a tensile load and to pure Rashba or quasipersistent ones under a compressive load. The material exhibits flexibility, a rubber-like response, and both positive and negative piezoelectric constants. A combination of such properties may create opportunities for flexible and rubbery spintronic devices.
Collapse
Affiliation(s)
- Ravi Kashikar
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Abduljelili Popoola
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Sergey Lisenkov
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - A Stroppa
- Consiglio Nazionale delle Ricerche, Institute for Superconducting and Innovative Materials and Devices (CNR-SPIN), c/o Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio I-67100 Coppito L'Aquila, Italy
| | - I Ponomareva
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
5
|
Hu G, Huang F, Liu JF. Piezoelectric manipulation of spin-orbit coupling in a Wurtzite heterostructure. Phys Chem Chem Phys 2023; 25:23001-23011. [PMID: 37594500 DOI: 10.1039/d3cp02902f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The combination of piezoelectricity and spin-orbit coupling (SOC) effect makes wurtzite semiconductors attractive for the development of exotic spin-related physics as well as spintronic applications. Triggering piezoelectricity, particularly by an external stimulus, provides a new perspective for manipulating SOC, but until now, a comprehensive understanding of this mechanism is lacking. Herein, by means of self-consistent calculations and Löwdin perturbation approach, we have explored the manipulation of SOC in the wurtzite (Al, Ga)N/GaN heterostructure by external stress-induced piezoelectric polarization. The results suggest that the Rashba SOC depends weakly on stress due to the wide-gap feature of the wurtzite crystal that makes Rashba SOC predominant by a bulk term instead of the structural inversion term. The piezoelectric polarization diminishes and even turns off Dresselhaus coupling by reducing the interfacial electric field. Moreover, piezoelectricity is shown to improve the poorly gate-tunable SOC. In the heterostructure with two occupied subbands, the Dresselhaus coupling of the second subband is more sensitive than the first one in response to stress. As an extension, we further demonstrate that the correlation effect in the wurtzite heterostructure can be significantly enhanced by piezoelectric polarization. This study offers an in-depth insight into piezoelectric modulation of spin-orbit physics, which has the potential for stimulating new quantum correlation states or designing functional spintronic devices.
Collapse
Affiliation(s)
- Gongwei Hu
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China.
| | - Fobao Huang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jun-Feng Liu
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Wang Z, Liu Z. Novel Piezoelectricity in Two-Dimensional Metallic/Semimetallic Materials with Out-of-Plane Polarization. J Phys Chem Lett 2023; 14:7549-7555. [PMID: 37589386 DOI: 10.1021/acs.jpclett.3c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Normally, the good conductivity of metals and semimetals is incompatible with the piezoelectricity since the internal electric current will dismiss any polarization. However, here, we reveal that the out-of-plane piezoelectric effect can exist in two-dimensional (2D) metallic/semimetallic materials due to their giant anisotropy. A method is developed to calculate the out-of-plane polarization in 2D systems, where the modern theory of polarization based on a Berry-phase approach is not applicable. Detailed calculation and analysis on a Dirac material, the FeB2 monolayer, show that it has an out-of-plane polarization of 8.3 pC/m and the piezoelectric coefficient of e31 = -59.3 pC/m and d31 = -0.25 pm/V. This work provides a formalism to discover more piezoelectric materials within the vast 2D metallic/semimetallic materials.
Collapse
Affiliation(s)
- Zijian Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Is F, Mohanta MK, Sarkar AD. Insights into selected 2D piezo Rashba semiconductors for self-powered flexible piezo spintronics: material to contact properties. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:253001. [PMID: 36958043 DOI: 10.1088/1361-648x/acc70f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
The new paradigm in electronics consists in realizing the seamless integration of many properties latent in nanomaterials, such as mechanical flexibility, strong spin-orbit coupling (Rashba spin splitting-RSS), and piezoelectricity. Taking cues from the pointers given on 1D ZnO nanowires (ACS Nano2018121811-20), the concept can be extended to multifunctional two-dimensional (2D) materials, which can serve as an ideal platform in next-generation electronics such as self-powered flexible piezo-spintronic device. However, a microscopically clear understanding reachable from the state-of-the-art density functional theory-based approaches is a prerequisite to advancing this research domain. Atomic-scale insights gained from meticulously performed scientific computations can firmly anchor the growth of this important research field, and that is of undeniable relevance from scientific and technological outlooks. This article reviews the scientific advance in understanding 2D materials hosting all the essential properties, i.e. flexibility, piezoelectricity, and RSS. Important 2D semiconducting monolayers that deserve a special mention, include monolayers of buckled MgX (X = S, Se, Te), CdTe, ZnTe, Janus structures of transition metal trichalcogenides, Janus tellurene and 2D perovskites. van Der Waals multilayers are also built to design multifunctional materials via modulation of the stacking sequence and interlayer coupling between the constituent layers. External electric field, strain engineering and charge doping are perturbations mainly used to tune the spintronic properties. Finally, the contact properties of these monolayers are also crucial for their actual implementation in electronic devices. The nature of the contacts, Schottky/Ohmic, needs to be carefully examined first as it controls the device's performance. In this regard, the rare occurrence of Ohmic contact in graphene/MgS van der Waals hetero bilayer has been presented in this review article.
Collapse
Affiliation(s)
- Fathima Is
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Manish Kumar Mohanta
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Abir De Sarkar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| |
Collapse
|
8
|
Bahadur J, Ryu J, Pandey P, Cho S, Cho JS, Kang DW. In situ crystal reconstruction strategy-based highly efficient air-processed inorganic CsPbI 2Br perovskite photovoltaics for indoor, outdoor, and switching applications. NANOSCALE 2023; 15:3850-3863. [PMID: 36723205 DOI: 10.1039/d2nr06230e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
All-inorganic CsPbI2Br (CPIB) perovskite has gained strong attention due to their favorable optoelectronic properties for photovoltaics. However, solution-processed CPIB films suffer from poor morphology due to the rapid crystallization process, which must be resolved for desirable photovoltaic performance. We introduced phenethylammonium iodide (PEAI) as an additive into a perovskite precursor that effectively controls the crystallization kinetics to construct the preferred quality α-CPIB film under ambient conditions. Various photophysical and structural characterization studies were performed to investigate the microstructural, morphological, and optoelectronic properties of the CPIB and PEAI-assisted perovskite films. We found that PEAI plays a vital role in decreasing pinholes, ensuring precise crystal growth, enhancing the crystallinity, improving the uniformity, and tailoring the film morphology by retarding the crystallization process, resulting in an improved device performance. The device based on the optimized PEAI additive (0.8 mg) achieved a respectably high power conversion efficiency (PCE) of 17.40% compared to the CPIB perovskite solar cell (PSC; 15.75%). Moreover, the CPIB + 0.8 mg PEAI PSC retained ∼87.25% of its original PCE, whereas the CPIB device retained ∼66.90% of the initial PCE after aging in a dry box at constant heating (85 °C) over 720 h, which revealed high thermal stability. Furthermore, the indoor photovoltaic performance under light-emitting diode (LED) lighting conditions (3200 K, 1000 lux) was investigated, and the CPIB + 0.8 mg PEAI PSC showed a promising PCE of 26.73% compared to the CPIB device (19.68%). In addition, we developed a switching function by employing the optimized PSC under LED lighting conditions, demonstrating the practical application of constructed indoor PSCs.
Collapse
Affiliation(s)
- Jitendra Bahadur
- Department of Energy Systems Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea.
| | - Jun Ryu
- Department of Smart Cities, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Padmini Pandey
- Department of Energy Systems Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea.
| | - SungWon Cho
- Department of Smart Cities, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Jung Sang Cho
- Department of Engineering Chemistry, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju-si, Chungbuk 361-763, Republic of Korea
| | - Dong-Won Kang
- Department of Energy Systems Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea.
- Department of Smart Cities, Chung-Ang University, Seoul, 06974 Republic of Korea
| |
Collapse
|
9
|
Sheoran S, Monga S, Phutela A, Bhattacharya S. Coupled Spin-Valley, Rashba Effect, and Hidden Spin Polarization in WSi 2N 4 Family. J Phys Chem Lett 2023; 14:1494-1503. [PMID: 36745045 DOI: 10.1021/acs.jpclett.2c03108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Using first-principles calculations, we report the electronic properties with a special focus on the band splitting in the WSi2N4 class of materials. Due to the broken inversion symmetry and strong spin-orbit coupling, we detect coupled spin-valley effects at the corners of the first Brillouin zone (BZ). Additionally, we observe cubically and linearly split bands around the Γ and M points, respectively. The in-plane mirror symmetry (σh) and reduced symmetry of the arbitrary k-point, enforce the persistent spin textures (PST) to occur in full BZ. We induce the Rashba splitting by breaking the σh through an out-of-plane external electric field (EEF). The inversion asymmetric site point group of the W atom introduces the hidden spin polarization in centrosymmetric layered bulk counterparts. Low energy k.p models demonstrate that the PST along the M-K line is robust to EEF and layer thickness, making them suitable for applications in spintronics and valleytronics.
Collapse
Affiliation(s)
- Sajjan Sheoran
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Sanchi Monga
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Ankita Phutela
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Saswata Bhattacharya
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
10
|
Noor-A-Alam M, Nolan M. Large piezoelectric response in ferroelectric/multiferroelectric metal oxyhalide MOX 2 (M = Ti, V and X = F, Cl and Br) monolayers. NANOSCALE 2022; 14:11676-11683. [PMID: 35912821 DOI: 10.1039/d2nr02761e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible two-dimensional (2D) piezoelectric materials are promising for applications in wearable electromechanical nano-devices such as sensors, energy harvesters, and actuators. A large piezo-response is required for any practical applications. Based on first-principles calculations, we report that ferroelectric TiOX2 and multiferroelectric VOX2 (X = F, Cl, and Br) monolayers exhibit large in-plane stress (e11) and strain (d11) piezoelectric coefficients. For example, the in-plane piezo-response of TiOBr2 (both e11 = 28.793 × 10-10 C m-1 and d11 = 37.758 pm V-1) is about an order of magnitude larger than that of the widely studied 1H-MoS2 monolayer, and also quite comparable to the giant piezoelectricity of group-IV monochalcogenide monolayers, e.g., SnS. Moreover, the d11 of MOX2 monolayers - ranging from 29.028 pm V-1 to 37.758 pm V-1 - are significantly higher than the d11 or d33 of commonly used 3D piezoelectrics such as w-AlN (d33 = 5.1 pm V-1) and α-quartz (d11 = 2.3 pm V-1). Such a large d11 of MOX2 monolayers originates from low in-plane elastic constants with large e11 due to large Born effective charges (Zij) and atomic sensitivity to an applied strain. Moreover, we show the possibility of opening a new way of controlling piezoelectricity by applying a magnetic field.
Collapse
Affiliation(s)
- Mohammad Noor-A-Alam
- Tyndall National Institute, Lee Maltings, Dyke Parade, University College Cork, T12R5CP Cork, Ireland.
| | - Michael Nolan
- Tyndall National Institute, Lee Maltings, Dyke Parade, University College Cork, T12R5CP Cork, Ireland.
| |
Collapse
|
11
|
Jung YS, Choi HJ, Park SH, Kim D, Park SH, Cho YS. Nanoampere-Level Piezoelectric Energy Harvesting Performance of Lithography-Free Centimeter-Scale MoS 2 Monolayer Film Generators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200184. [PMID: 35451217 DOI: 10.1002/smll.202200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/27/2022] [Indexed: 06/14/2023]
Abstract
2D transition-metal dichalcogenides have been reported to possess piezoelectricity due to their lack of inversion symmetry; thus, they are potentially applicable as electromechanical energy harvesters. Herein, the authors propose a lithography-free piezoelectric energy harvester composed of centimeter-scale MoS2 monolayer films with an interdigitated electrode pattern that is enabled only by the large scale of the film. High-quality large-scale synthesis of the monolayer films is conducted by low-pressure chemical vapor deposition with the assistance of an unprecedented Na2 S promoter. The extra sulfur supplied by Na2 S critically passivates the sulfur vacancies. The energy harvester having a large active area of ≈18.3 mm2 demonstrates an unexpectedly high piezoelectric energy harvesting performance of ≈400.4 mV and ≈40.7 nA under a bending strain of 0.57%, with the careful adjustment of side electrodes along the zigzag atomic arrays in the two dominant domain structure. Nanoampere-level harvesting has not yet been reported with any 2D material-based harvester.
Collapse
Affiliation(s)
- Ye Seul Jung
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea
| | - Hong Je Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea
- Samsung Electro-Mechanics Co. Ltd, Gyeonggi-do, 16674, Korea
| | - Sung Hyun Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea
| | - Daeyeon Kim
- Department of Physics, Yonsei University, Seoul, 03722, Korea
| | - Seung-Han Park
- Department of Physics, Yonsei University, Seoul, 03722, Korea
| | - Yong Soo Cho
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|