1
|
Hao Z, Kong L, Ruan L, Deng Z. Recent Advances in DNA Origami-Enabled Optical Biosensors for Multi-Scenario Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1968. [PMID: 39683355 DOI: 10.3390/nano14231968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Over the past few years, significant progress has been made in DNA origami technology due to the unrivaled self-assembly properties of DNA molecules. As a highly programmable, addressable, and biocompatible nanomaterial, DNA origami has found widespread applications in biomedicine, such as cell scaffold construction, antimicrobial drug delivery, and supramolecular enzyme assembly. To expand the scope of DNA origami application scenarios, researchers have developed DNA origami structures capable of actively identifying and quantitatively reporting targets. Optical DNA origami biosensors are promising due to their fast-to-use, sensitive, and easy implementation. However, the conversion of DNA origami to optical biosensors is still in its infancy stage, and related strategies have not been systematically summarized, increasing the difficulty of guiding subsequent researchers. Therefore, this review focuses on the universal strategies that endow DNA origami with dynamic responsiveness from both de novo design and current DNA origami modification. Various applications of DNA origami biosensors are also discussed. Additionally, we highlight the advantages of DNA origami biosensors, which offer a single-molecule resolution and high signal-to-noise ratio as an alternative to traditional analytical techniques. We believe that over the next decade, researchers will continue to transform DNA origami into optical biosensors and explore their infinite possible uses.
Collapse
Affiliation(s)
- Ziao Hao
- State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Lijun Kong
- State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Longfei Ruan
- State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Zhengtao Deng
- State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Mohammadi F, Zahraee H, Zibadi F, Khoshbin Z, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Progressive cancer targeting by programmable aptamer-tethered nanostructures. MedComm (Beijing) 2024; 5:e775. [PMID: 39434968 PMCID: PMC11491555 DOI: 10.1002/mco2.775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Scientific research in recent decades has affirmed an increase in cancer incidence as a cause of death globally. Cancer can be considered a plurality of various diseases rather than a single disease, which can be a multifaceted problem. Hence, cancer therapy techniques acquired more accelerated and urgent approvals compared to other therapeutic approaches. Radiotherapy, chemotherapy, immunotherapy, and surgery have been widely adopted as routine cancer treatment strategies to suppress disease progression and metastasis. These therapeutic approaches have lengthened the longevity of countless cancer patients. Nonetheless, some inherent limitations have restricted their application, including insignificant therapeutic efficacy, toxicity, negligible targeting, non-specific distribution, and multidrug resistance. The development of therapeutic oligomer nanoconstructs with the advantages of chemical solid-phase synthesis, programmable design, and precise adjustment is crucial for advancing smart targeted drug nanocarriers. This review focuses on the significance of the different aptamer-assembled nanoconstructs as multifunctional nucleic acid oligomeric nanoskeletons in efficient drug delivery. We discuss recent advancements in the design and utilization of aptamer-tethered nanostructures to enhance the efficacy of cancer treatment. Valuably, this comprehensive review highlights self-assembled aptamers as the exceptionally intelligent nano-biomaterials for targeted drug delivery based on their superior stability, high specificity, excellent recoverability, inherent biocompatibility, and versatile functions.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Hamed Zahraee
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Farkhonde Zibadi
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Zahra Khoshbin
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medicinal ChemistrySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Mohammad Ramezani
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Mona Alibolandi
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Khalil Abnous
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medicinal ChemistrySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
3
|
Neuhoff M, Wang Y, Vantangoli NJ, Poirier MG, Castro CE, Pfeifer WG. Recycling Materials for Sustainable DNA Origami Manufacturing. NANO LETTERS 2024; 24:12080-12087. [PMID: 39315689 PMCID: PMC11451448 DOI: 10.1021/acs.nanolett.4c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024]
Abstract
DNA origami nanotechnology has great potential in multiple fields including biomedical, biophysical, and nanofabrication applications. However, current production pipelines lead to single-use devices incorporating a small fraction of initial reactants, resulting in a wasteful manufacturing process. Here, we introduce two complementary approaches to overcome these limitations by recycling the strand components of DNA origami nanostructures (DONs). We demonstrate reprogramming entire DONs into new devices, reusing scaffold strands. We validate this approach by reprogramming DONs with complex geometries into each other, using their distinct geometries to verify successful scaffold recycling. We reprogram one DON into a dynamic structure and show both pristine and recycled structures display similar properties. Second, we demonstrate the recovery of excess staple strands postassembly and fold DONs with these recycled strands, showing these structures exhibit the expected geometry and dynamic properties. Finally, we demonstrate the combination of both approaches, successfully fabricating DONs solely from recycled DNA components.
Collapse
Affiliation(s)
- Michael
J. Neuhoff
- Department
of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuchen Wang
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas J. Vantangoli
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michael G. Poirier
- Department
of Physics, The Ohio State University, Columbus, Ohio 43210, United States
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Carlos E. Castro
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wolfgang G. Pfeifer
- Department
of Physics, The Ohio State University, Columbus, Ohio 43210, United States
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Roozbahani GM, Colosi PL, Oravecz A, Sorokina EM, Pfeifer W, Shokri S, Wei Y, Didier P, DeLuca M, Arya G, Tora L, Lakadamyali M, Poirier MG, Castro CE. Piggybacking functionalized DNA nanostructures into live-cell nuclei. SCIENCE ADVANCES 2024; 10:eadn9423. [PMID: 38968349 PMCID: PMC11225781 DOI: 10.1126/sciadv.adn9423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
DNA origami nanostructures (DOs) are promising tools for applications including drug delivery, biosensing, detecting biomolecules, and probing chromatin substructures. Targeting these nanodevices to mammalian cell nuclei could provide impactful approaches for probing, visualizing, and controlling biomolecular processes within live cells. We present an approach to deliver DOs into live-cell nuclei. We show that these DOs do not undergo detectable structural degradation in cell culture media or cell extracts for 24 hours. To deliver DOs into the nuclei of human U2OS cells, we conjugated 30-nanometer DO nanorods with an antibody raised against a nuclear factor, specifically the largest subunit of RNA polymerase II (Pol II). We find that DOs remain structurally intact in cells for 24 hours, including inside the nucleus. We demonstrate that electroporated anti-Pol II antibody-conjugated DOs are piggybacked into nuclei and exhibit subdiffusive motion inside the nucleus. Our results establish interfacing DOs with a nuclear factor as an effective method to deliver nanodevices into live-cell nuclei.
Collapse
Affiliation(s)
- Golbarg M. Roozbahani
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - P. L. Colosi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Attila Oravecz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France
- Université de Strasbourg, Illkirch 67404, France
| | - Elena M. Sorokina
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wolfgang Pfeifer
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Siamak Shokri
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Yin Wei
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Pascal Didier
- Université de Strasbourg, Illkirch 67404, France
- Laboratoire de Biophotonique et Pharmacologie, Illkirch 67401, France
| | - Marcello DeLuca
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France
- Université de Strasbourg, Illkirch 67404, France
| | - Melike Lakadamyali
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael G. Poirier
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Carlos E. Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Duan X, Qin W, Hao J, Yu X. Recent advances in the applications of DNA frameworks in liquid biopsy: A review. Anal Chim Acta 2024; 1308:342578. [PMID: 38740462 DOI: 10.1016/j.aca.2024.342578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
Cancer is one of the serious threats to public life and health. Early diagnosis, real-time monitoring, and individualized treatment are the keys to improve the survival rate and prolong the survival time of cancer patients. Liquid biopsy is a potential technique for cancer early diagnosis due to its non-invasive and continuous monitoring properties. However, most current liquid biopsy techniques lack the ability to detect cancers at the early stage. Therefore, effective detection of a variety of cancers is expected through the combination of various techniques. Recently, DNA frameworks with tailorable functionality and precise addressability have attracted wide spread attention in biomedical applications, especially in detecting cancer biomarkers such as circulating tumor cells (CTCs), exosomes and circulating tumor nucleic acid (ctNA). Encouragingly, DNA frameworks perform outstanding in detecting these cancer markers, but also face some challenges and opportunities. In this review, we first briefly introduced the development of DNA frameworks and its typical structural characteristics and advantages. Then, we mainly focus on the recent progress of DNA frameworks in detecting commonly used cancer markers in liquid-biopsy. We summarize the advantages and applications of DNA frameworks for detecting CTCs, exosomes and ctNA. Furthermore, we provide an outlook on the possible opportunities and challenges for exploiting the structural advantages of DNA frameworks in the field of cancer diagnosis. Finally, we envision the marriage of DNA frameworks with other emerging materials and technologies to develop the next generation of disease diagnostic biosensors.
Collapse
Affiliation(s)
- Xueyuan Duan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Weiwei Qin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China.
| | - Jicong Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Wu H, Zhang T, Qin Y, Xia X, Bai T, Gu H, Wei B. Expanding DNA Origami Design Freedom with De Novo Synthesized Scaffolds. J Am Chem Soc 2024; 146:16076-16084. [PMID: 38803270 DOI: 10.1021/jacs.4c03148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The construction of DNA origami nanostructures is heavily dependent on the folding of the scaffold strand, which is typically a single-stranded DNA genome extracted from a bacteriophage (M13). Custom scaffolds can be prepared in a number of methods, but they are not widely accessible to a broad user base in the DNA nanotechnology community. Here, we explored new design and construction possibilities with custom scaffolds prepared in our cost- and time-efficient production pipeline. According to the pipeline, we de novo produced a variety of scaffolds of specified local and global sequence characteristics and consequent origami constructs of modular arrangement in morphologies and functionalities. Taking advantage of this strategy of template-free scaffold production, we also designed and produced three-letter-coded scaffolds that can fold into designated morphologies rapidly at room temperature. The expanded design and construction freedom immediately brings in many new research opportunities and invites many more on the horizon.
Collapse
Affiliation(s)
- Hongrui Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Tianqing Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Yan Qin
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Xinwei Xia
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 201108 ,China
| | - Tanxi Bai
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Hongzhou Gu
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 201108 ,China
| | - Bryan Wei
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Roozbahani GM, Colosi P, Oravecz A, Sorokina EM, Pfeifer W, Shokri S, Wei Y, Didier P, DeLuca M, Arya G, Tora L, Lakadamyali M, Poirier MG, Castro CE. Piggybacking functionalized DNA nanostructures into live cell nuclei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573746. [PMID: 38260628 PMCID: PMC10802371 DOI: 10.1101/2023.12.30.573746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
DNA origami (DO) are promising tools for in vitro or in vivo applications including drug delivery; biosensing, detecting biomolecules; and probing chromatin sub-structures. Targeting these nanodevices to mammalian cell nuclei could provide impactful approaches for probing visualizing and controlling important biological processes in live cells. Here we present an approach to deliver DO strucures into live cell nuclei. We show that labelled DOs do not undergo detectable structural degradation in cell culture media or human cell extracts for 24 hr. To deliver DO platforms into the nuclei of human U2OS cells, we conjugated 30 nm long DO nanorods with an antibody raised against the largest subunit of RNA Polymerase II (Pol II), a key enzyme involved in gene transcription. We find that DOs remain structurally intact in cells for 24hr, including within the nucleus. Using fluorescence microscopy we demonstrate that the electroporated anti-Pol II antibody conjugated DOs are efficiently piggybacked into nuclei and exihibit sub-diffusive motion inside the nucleus. Our results reveal that functionalizing DOs with an antibody raised against a nuclear factor is a highly effective method for the delivery of nanodevices into live cell nuclei.
Collapse
Affiliation(s)
- Golbarg M. Roozbahani
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Patricia Colosi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Attila Oravecz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, 67404, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, 67404, France
- Université de Strasbourg, Illkirch, 67404, France
| | - Elena M. Sorokina
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wolfgang Pfeifer
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Siamak Shokri
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Yin Wei
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Pascal Didier
- Université de Strasbourg, Illkirch, 67404, France
- Laboratoire de Biophotonique et Pharmacologie, Illkirch, 67401, France
| | - Marcello DeLuca
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, United States
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, United States
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, 67404, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, 67404, France
- Université de Strasbourg, Illkirch, 67404, France
| | - Melike Lakadamyali
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael G. Poirier
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Carlos E. Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
8
|
Pfeifer WG, Huang CM, Poirier MG, Arya G, Castro CE. Versatile computer-aided design of free-form DNA nanostructures and assemblies. SCIENCE ADVANCES 2023; 9:eadi0697. [PMID: 37494445 PMCID: PMC10371015 DOI: 10.1126/sciadv.adi0697] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
Recent advances in structural DNA nanotechnology have been facilitated by design tools that continue to push the limits of structural complexity while simplifying an often-tedious design process. We recently introduced the software MagicDNA, which enables design of complex 3D DNA assemblies with many components; however, the design of structures with free-form features like vertices or curvature still required iterative design guided by simulation feedback and user intuition. Here, we present an updated design tool, MagicDNA 2.0, that automates the design of free-form 3D geometries, leveraging design models informed by coarse-grained molecular dynamics simulations. Our GUI-based, stepwise design approach integrates a high level of automation with versatile control over assembly and subcomponent design parameters. We experimentally validated this approach by fabricating a range of DNA origami assemblies with complex free-form geometries, including a 3D Nozzle, G-clef, and Hilbert and Trifolium curves, confirming excellent agreement between design input, simulation, and structure formation.
Collapse
Affiliation(s)
- Wolfgang G. Pfeifer
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Chao-Min Huang
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Michael G. Poirier
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Carlos E. Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Oktay E, Bush J, Vargas M, Scarton DV, O'Shea B, Hartman A, Green CM, Neyra K, Gomes CM, Medintz IL, Mathur D, Veneziano R. Customized Scaffolds for Direct Assembly of Functionalized DNA Origami. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37267624 DOI: 10.1021/acsami.3c05690] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Functional DNA origami nanoparticles (DNA-NPs) are used as nanocarriers in a variety of biomedical applications including targeted drug delivery and vaccine development. DNA-NPs can be designed into a broad range of nanoarchitectures in one, two, and three dimensions with high structural fidelity. Moreover, the addressability of the DNA-NPs enables the precise organization of functional moieties, which improves targeting, actuation, and stability. DNA-NPs are usually functionalized via chemically modified staple strands, which can be further conjugated with additional polymers and proteins for the intended application. Although this method of functionalization is extremely efficient to control the stoichiometry and organization of functional moieties, fewer than half of the permissible sites are accessible through staple modifications. In addition, DNA-NP functionalization rapidly becomes expensive when a high number of functionalizations such as fluorophores for tracking and chemical modifications for stability that do not require spatially precise organization are used. To facilitate the synthesis of functional DNA-NPs, we propose a simple and robust strategy based on an asymmetric polymerase chain reaction (aPCR) protocol that allows direct synthesis of custom-length scaffolds that can be randomly modified and/or precisely modified via sequence design. We demonstrated the potential of our strategy by producing and characterizing heavily modified scaffold strands with amine groups for dye functionalization, phosphorothioate bonds for stability, and biotin for surface immobilization. We further validated our sequence design approach for precise conjugation of biomolecules by synthetizing scaffolds including binding loops and aptamer sequences that can be used for direct hybridization of nucleic acid tagged biomolecules or binding of protein targets.
Collapse
Affiliation(s)
- Esra Oktay
- College of Engineering and Computing, Department of Bioengineering, George Mason University, Manassas, Virginia 20110-2201, United States
- Institute for Advanced Biomedical Research, Manassas, Virginia 20110-2201, United States
| | - Joshua Bush
- College of Engineering and Computing, Department of Bioengineering, George Mason University, Manassas, Virginia 20110-2201, United States
- Institute for Advanced Biomedical Research, Manassas, Virginia 20110-2201, United States
| | - Merlyn Vargas
- College of Engineering and Computing, Department of Bioengineering, George Mason University, Manassas, Virginia 20110-2201, United States
| | - Dylan Valerio Scarton
- College of Science, Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, Virginia 22030-4444, United States
- Institute for Advanced Biomedical Research, Manassas, Virginia 20110-2201, United States
| | - Bailey O'Shea
- College of Engineering and Computing, Department of Bioengineering, George Mason University, Manassas, Virginia 20110-2201, United States
| | - Amber Hartman
- College of Engineering and Computing, Department of Bioengineering, George Mason University, Manassas, Virginia 20110-2201, United States
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington DC 20375-0001, United States
| | - Kayla Neyra
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078, United States
| | - Carolina M Gomes
- College of Engineering and Computing, Department of Bioengineering, George Mason University, Manassas, Virginia 20110-2201, United States
- Institute for Advanced Biomedical Research, Manassas, Virginia 20110-2201, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington DC 20375-0001, United States
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078, United States
| | - Remi Veneziano
- College of Engineering and Computing, Department of Bioengineering, George Mason University, Manassas, Virginia 20110-2201, United States
- Institute for Advanced Biomedical Research, Manassas, Virginia 20110-2201, United States
| |
Collapse
|
10
|
Self-assembly of DNA nanospheres with controllable size and self-degradable property for enhanced antitumor chemotherapy. Colloids Surf B Biointerfaces 2023; 222:113122. [PMID: 36587435 DOI: 10.1016/j.colsurfb.2022.113122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Controllable size, self-degradability and targeting property are important for a precise improvement of anticancer effects and reduction of side effects of drug vehicles. Here, a series of DNA nanospheres with controllable size and self-degradation ability were constructed through the hybridization of two i-motif strands and two linker strands for targeted cancer therapy. DNA nanospheres with different sizes were fabricated by regulating the linker sequence, and their pH-responsive self-degradation property was realized by the introduction of the i-motif strand. Moreover, the ZY11 aptamer was introduced to endow the DNA nanospheres with targeting property toward SMMC-7721 cancer cells. The results revealed that the appropriate size of DNA nanospheres (80 nm) highly promoted the internalization by mammalian cells. The results of DLS, AFM and CD spectra showed that the DNA nanospheres were stable in a physiological environment but they self-degraded in a slightly acidic environment due to the existence of the i-motif strand. Moreover, the fluorescence of DOX@AP-NSs2 was triple at pH = 5.0 than at pH = 7.4, which further confirmed the pH-responsive drug release performance. The above results proved that the use of DOX@AP-NSs2 is a promising approach to accelerate the rapid release of drugs into the tumors and avoid drug leakage into the normal tissue. The results at a cellular level and in vivo confirmed the pH-responsive targeted antitumor effect. Hence, the novel DNA nanospheres with controllable size and self-degradable property represent a potential tool for targeted drug delivery and cancer therapy.
Collapse
|
11
|
Knappe GA, Wamhoff EC, Bathe M. Functionalizing DNA origami to investigate and interact with biological systems. NATURE REVIEWS. MATERIALS 2023; 8:123-138. [PMID: 37206669 PMCID: PMC10191391 DOI: 10.1038/s41578-022-00517-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 05/21/2023]
Abstract
DNA origami has emerged as a powerful method to generate DNA nanostructures with dynamic properties and nanoscale control. These nanostructures enable complex biophysical studies and the fabrication of next-generation therapeutic devices. For these applications, DNA origami typically needs to be functionalized with bioactive ligands and biomacromolecular cargos. Here, we review methods developed to functionalize, purify, and characterize DNA origami nanostructures. We identify remaining challenges, such as limitations in functionalization efficiency and characterization. We then discuss where researchers can contribute to further advance the fabrication of functionalized DNA origami.
Collapse
Affiliation(s)
- Grant A. Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| | - Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| |
Collapse
|
12
|
Kosinski R, Perez JM, Schöneweiß EC, Ruiz-Blanco YB, Ponzo I, Bravo-Rodriguez K, Erkelenz M, Schlücker S, Uhlenbrock G, Sanchez-Garcia E, Saccà B. The role of DNA nanostructures in the catalytic properties of an allosterically regulated protease. SCIENCE ADVANCES 2022; 8:eabk0425. [PMID: 34985948 PMCID: PMC8730604 DOI: 10.1126/sciadv.abk0425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/10/2021] [Indexed: 06/04/2023]
Abstract
DNA-scaffolded enzymes typically show altered kinetic properties; however, the mechanism behind this phenomenon is still poorly understood. We address this question using thrombin, a model of allosterically regulated serine proteases, encaged into DNA origami cavities with distinct structural and electrostatic features. We compare the hydrolysis of substrates that differ only in their net charge due to a terminal residue far from the cleavage site and presumably involved in the allosteric activation of thrombin. Our data show that the reaction rate is affected by DNA/substrate electrostatic interactions, proportionally to the degree of DNA/enzyme tethering. For substrates of opposite net charge, this leads to an inversion of the catalytic response of the DNA-scaffolded thrombin when compared to its freely diffusing counterpart. Hence, by altering the electrostatic environment nearby the encaged enzyme, DNA nanostructures interfere with charge-dependent mechanisms of enzyme-substrate recognition and may offer an alternative tool to regulate allosteric processes through spatial confinement.
Collapse
Affiliation(s)
- Richard Kosinski
- Bionanotechnology, CENIDE and ZMB, University of Duisburg-Essen, 45117 Essen, Germany
| | - Joel Mieres Perez
- Computational Biochemistry, ZMB, University of Duisburg-Essen, 45117 Essen, Germany
| | - Elisa-C. Schöneweiß
- Bionanotechnology, CENIDE and ZMB, University of Duisburg-Essen, 45117 Essen, Germany
| | | | - Irene Ponzo
- Dynamic Biosensors GmbH, 82152 Martinsried, Germany
| | | | - Michael Erkelenz
- Physical Chemistry, CENIDE and ZMB, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sebastian Schlücker
- Physical Chemistry, CENIDE and ZMB, University of Duisburg-Essen, 45117 Essen, Germany
| | | | - Elsa Sanchez-Garcia
- Computational Biochemistry, ZMB, University of Duisburg-Essen, 45117 Essen, Germany
| | - Barbara Saccà
- Bionanotechnology, CENIDE and ZMB, University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|