1
|
Yue Y, Zhong X, Sun M, Du J, Gao W, Hu W, Zhao C, Li J, Huang B, Li Z, Li C. Fluorine Engineering Induces Phase Transformation in NiCo 2O 4 for Enhanced Active Motifs Formation in Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418058. [PMID: 40244616 DOI: 10.1002/adma.202418058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/14/2025] [Indexed: 04/18/2025]
Abstract
Dynamic reconstruction of catalysts is key to active site formation in alkaline oxygen evolution reaction (OER), but precise control over this process remains challenging. Herein, F-doped NiCo2O4 (NiCo2O4-Fn), consisting of a NiCo2O4 core and a (NH4)NixCo1-xF3 shell is reported, which promotes the formation of a dual-metal NiCoOOH active phase. In situ Raman and X-ray absorption fine structure analyses reveal that the NiCoOOH, rich in oxygen vacancies (Ov), forms at 1.2 V versus the reversible hydrogen electrode (RHE) for NiCo2O4-F1, in contrast to the NiOOH phase formation at 1.4 V versus RHE for undoped NiCo2O4. This is facilitated by the transformation of (NH4)NixCo1-xF3 into amorphous NixCo1-x(OH)2 in the KOH electrolyte without bias. Electrochemical tests show that NiCo2O4-F1 exhibits a 14-fold increase in intrinsic activity compared to NiCo2O4. Theoretical calculations suggest that Ov-induced unsaturated Co and Ni sites enhance electroactivity by promoting *OH intermediates adsorption and conversion, lowering the OER energy barrier. The oriented control of NiCoOOH active motifs in NiCo2O4 spinel, achieved through fluorine engineering, paves a new avenue for designing efficient OER electrocatalysts.
Collapse
Affiliation(s)
- Ya Yue
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xinyu Zhong
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingzi Sun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jing Du
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wensheng Gao
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wei Hu
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Chunyang Zhao
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jiong Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Bolong Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Zelong Li
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Can Li
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
| |
Collapse
|
2
|
Zhu A, Qiao L, Liu K, Gan G, Luan C, Lin D, Zhou Y, Bu S, Zhang T, Liu K, Song T, Liu H, Li H, Hong G, Zhang W. Rational design of precatalysts and controlled evolution of catalyst-electrolyte interface for efficient hydrogen production. Nat Commun 2025; 16:1880. [PMID: 39987094 PMCID: PMC11846950 DOI: 10.1038/s41467-025-57056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
The concept of precatalyst is widely accepted in electrochemical water splitting, but the role of precatalyst activation and the resulted changes of electrolyte composition is often overlooked. Here, we elucidate the impact of potential-dependent changes for both precatalyst and electrolyte using Co2Mo3O8 as a model system. Potential-dependent reconstruction of Co2Mo3O8 precatalyst results in an electrochemically stable Co(OH)2@Co2Mo3O8 catalyst and additional Mo dissolved as MoO42- into electrolyte. The Co(OH)2/Co2Mo3O8 interface accelerates the Volmer reaction and negative potentials induced Mo2O72- (from MoO42-) further enhances proton adsorption and H2 desorption. Leveraging these insights, the well-designed MoO42-/Mo2O72- modified Co(OH)2@Co2Mo3O8 catalyst achieves a Faradaic efficiency of 99.9% and a yield of 1.85 mol h-1 at -0.4 V versus reversible hydrogen electrode (RHE) for hydrogen generation. Moreover, it maintains stable over one month at approximately 100 mA cm-2, highlighting its industrial suitability. This work underscores the significance of understanding on precatalyst reconstruction and electrolyte evolution in catalyst design.
Collapse
Affiliation(s)
- Anquan Zhu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Lulu Qiao
- Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macao SAR, China
| | - Kai Liu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Guoqiang Gan
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chuhao Luan
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Dewu Lin
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yin Zhou
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shuyu Bu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Tian Zhang
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kunlun Liu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Tianyi Song
- Department of Chemistry, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Heng Liu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan.
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan.
| | - Guo Hong
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
- The Shenzhen Research Institute, City University of Hong Kong, 518057, Shenzhen, China.
| | - Wenjun Zhang
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
3
|
Ai L, Wang X, Luo J, Jiang J. Superwettable and photothermal all-in-one electrocatalyst for boosting water/urea electrolysis. J Colloid Interface Sci 2023; 644:134-145. [PMID: 37105037 DOI: 10.1016/j.jcis.2023.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
Developing multifunctional all-in-one electrocatalysts for energy-saving hydrogen generation remains a challenge. In this study, a simple and feasible thermal phosphorization strategy is explored to rationally construct P-doped MoO2-NiMoO4 heterostructure on nickel foam (NF). The heterointerfaced P-MoO2-NiMoO4/NF can simultaneously realize the integrated all-in-one functionalities, innovatively introducing superwettable surfaces, photothermal conversion capabilities and electrocatalytic functions. The superwettability gives P-MoO2-NiMoO4/NF sufficient electrolyte permeation and smooth bubble detachment. The plasmonic MoO2 with photothermal performance greatly elevates the local surface temperature of in P-MoO2-NiMoO4/NF, which is conducive to improve the electrocatalytic efficiency. The favorable in-situ surface reconstruction brings abundant active sites for electrocatalytic reactions. As an advanced multifunctional electrocatalyst, the superwettable and photothermal P-MoO2-NiMoO4/NF exhibits significantly improved performances in oxygen evolution reaction (OER) and urea oxidation reaction (UOR). More importantly, the highly efficient and stable overall water-urea electrolysis assisted by photothermal fields can be simply achieved by exposing P-MoO2-NiMoO4/NF to near-infrared (NIR) light.
Collapse
Affiliation(s)
- Lunhong Ai
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xinzhi Wang
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jingyu Luo
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jing Jiang
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| |
Collapse
|
4
|
Wang X, Zhao M, Gong Z, Fang S, Hu S, Pi W, Bao H. Cauliflower-like NiFe alloys anchored on a flake iron nickel carbonate hydroxide heterostructure towards superior overall water and urea electrolysis. NANOSCALE 2023; 15:779-790. [PMID: 36533301 DOI: 10.1039/d2nr05381k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring efficient, stable and multifunctional Earth-rich electrocatalysts is vital for hydrogen generation. Hence, an efficient heterostructure consisting of cauliflower-like NiFe alloys anchored on flake iron nickel carbonate hydroxide which is supported on carbon cloth (NiFe/NiFeCH/CC) was synthesized as a trifunctional electrocatalyst for efficient hydrogen production by overall water and urea splitting. While optimizing and regulating the ratio of Ni to Fe, benefiting from the special morphology and synergistic effect between the NiFe alloy and NiFeCH, the NiFe/NiFeCH/CC heterostructure exhibits outstanding oxygen evolution reaction (OER) performance with a low overpotential of 190 mV at 10 mA cm-2 after a stability test for 150 h. Notably, when the NiFe/NiFeCH/CC heterostructure is used as both the anode and cathode simultaneously, it merely requires a cell voltage of 1.49 V for the overall water splitting and 1.39 V for urea electrolysis at 10 mA cm-2 with excellent durability. Thus, this work not just provides the application of NiFe-based catalysts in overall water splitting, but also offers a viable method for the treatment of urea-rich wastewater.
Collapse
Affiliation(s)
- Xing Wang
- School of Materials Science and Engineering, Key Laboratory for New Textile Materials and Applications of Hubei Province, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200 Wuhan, China.
| | - Meiru Zhao
- School of Materials Science and Engineering, Key Laboratory for New Textile Materials and Applications of Hubei Province, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200 Wuhan, China.
| | - Zhangquan Gong
- School of Materials Science and Engineering, Key Laboratory for New Textile Materials and Applications of Hubei Province, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200 Wuhan, China.
| | - Siyao Fang
- School of Materials Science and Engineering, Key Laboratory for New Textile Materials and Applications of Hubei Province, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200 Wuhan, China.
| | - Sheng Hu
- School of Materials Science and Engineering, Key Laboratory for New Textile Materials and Applications of Hubei Province, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200 Wuhan, China.
| | - Wei Pi
- School of Materials Science and Engineering, Key Laboratory for New Textile Materials and Applications of Hubei Province, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200 Wuhan, China.
| | - Haifeng Bao
- School of Materials Science and Engineering, Key Laboratory for New Textile Materials and Applications of Hubei Province, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200 Wuhan, China.
| |
Collapse
|
5
|
Fluorine-doped nickel oxyhydroxide as a robust electrocatalyst for oxygen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Zhang J, Ye Y, Wang Z, Xu Y, Gui L, He B, Zhao L. Probing Dynamic Self-Reconstruction on Perovskite Fluorides toward Ultrafast Oxygen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201916. [PMID: 35869034 PMCID: PMC9507342 DOI: 10.1002/advs.202201916] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/01/2022] [Indexed: 05/22/2023]
Abstract
Exploring low cost, highly active, and durable electrocatalysts for oxygen evolution reaction (OER) is of prime importance to boost energy conversion efficiency. Perovskite fluorides are emerging as alternative electrocatalysts for OER, however, their intrinsically active sites during real operation are still elusive. Herein, the self-reconstruction on newly designed NiFe coupled perovskite fluorides during OER process is demonstrated. In situ Raman spectroscopy, ex situ X-ray absorption spectroscopy, and theoretical calculation reveal that Fe incorporation can significantly activate the self-reconstruction of perovskite fluorides and efficiently lower the energy barrier of OER. Benefiting from self-reconstruction and low energy barrier, the KNi0.8 Fe0.2 F3 @nickel foam (KNFF2@NF) electrocatalyst delivers an ultralow overpotential of 258 mV to afford 100 mA cm-2 and an excellent durability for 100 h, favorably rivaling most the state-of-the-art OER electrocatalysts. This protocol provides the fundamental understanding on OER mechanism associated with surface reconstruction for perovskite fluorides.
Collapse
Affiliation(s)
- Jing Zhang
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Yu Ye
- State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhan430074China
| | - Zhenbin Wang
- Department of PhysicsTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Yin Xu
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Liangqi Gui
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
- School of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Beibei He
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
- Shenzhen Research InstituteChina University of GeosciencesShenzhen518000China
| | - Ling Zhao
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
- Shenzhen Research InstituteChina University of GeosciencesShenzhen518000China
| |
Collapse
|
7
|
Zheng HB, Wang YL, Xie JW, Gao PZ, Li DY, Rebrov EV, Qin H, Liu XP, Xiao HN. Enhanced Alkaline Oxygen Evolution Using Spin Polarization and Magnetic Heating Effects under an AC Magnetic Field. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34627-34636. [PMID: 35862430 DOI: 10.1021/acsami.2c05977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Renewable electricity from splitting water to produce hydrogen is a favorable technology to achieve carbon neutrality, but slow anodic oxygen evolution reaction (OER) kinetics limits its large-scale commercialization. Electron spin polarization and increasing the reaction temperature are considered as potential ways to promote alkaline OER. Here, it is reported that in the alkaline OER process under an AC magnetic field, a ferromagnetic ordered electrocatalyst can simultaneously act as a heater and a spin polarizer to achieve significant OER enhancement at a low current density. Moreover, its effect obviously precedes antiferromagnetic, ferrimagnetic, and diamagnetic electrocatalysts. In particular, the noncorrected overpotential of the ferromagnetic electrocatalyst Co at 10 mA cm-2 is reduced by a maximum of 36.6% to 243 mV at 4.320 mT. It is found that the magnetic heating effect is immediate, and more importantly, it is localized and hardly affects the temperature of the entire electrolytic cell. In addition, the spin pinning effect established on the ferromagnetic/paramagnetic interface generated during the reconstruction of the ferromagnetic electrocatalyst expands the ferromagnetic order of the paramagnetic layer. Also, the introduction of an external magnetic field further increases the orderly arrangement of spins, thereby promoting OER. This work provides a reference for the design of high-performance OER electrocatalysts under a magnetic field.
Collapse
Affiliation(s)
- Hang-Bo Zheng
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yuan-Li Wang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jia-Wei Xie
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Peng-Zhao Gao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Dong-Yun Li
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310016, China
| | - Evgeny V Rebrov
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, U.K
| | - Hang Qin
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiao-Pan Liu
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Han-Ning Xiao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
8
|
Goswami R, Karthick K, Das S, Rajput S, Seal N, Pathak B, Kundu S, Neogi S. Brønsted Acid-Functionalized Ionic Co(II) Framework: A Tailored Vessel for Electrocatalytic Oxygen Evolution and Size-Exclusive Optical Speciation of Biothiols. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29773-29787. [PMID: 35728309 DOI: 10.1021/acsami.2c05299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) not only combine globally demanded renewable energy generation and environmental remediation onto a single platform but also rationalize structure-performance synergies to devise smarter materials with remarkable performance. The robust and non-interpenetrated cationic MOF exemplifies a unique bifunctional scaffold for the efficient electrochemical oxygen evolution reaction (OER) and ultrasensitive monitoring of biohazards. The microporous framework containing Brønsted acid-functionalized [Co2(μ2-OH)(CO2)2] secondary building units (SBUs) exhibits remarkable OER performance in 1 M KOH, requiring 410 mV overpotential to obtain 10 mA cm-2 anodic current density, and a low Tafel slope of 55 mV/dec with 93.1% Faradaic efficiency. Apart from the high turnover frequency and electrochemically assessable surface area, steady OER performance over 500 cycles under potentiodynamic and potentiostatic conditions result in long-term catalyst durability. The highly emissive attribute from nitrogen-rich fluorescent struts benefits the MOF in recyclable and selective fluoro-detection of three biothiols (l-cysteine, homocysteine, and glutathione) in water with a fast response time. In addition to colorimetric monitoring in the solid and solution phases, control experiments validate size-exclusive biothiol speciation through molecular-dimension-mediated pore diffusion. The role of SBUs in the OER mechanism is detailed from density functional theory-derived free energy analysis, which also validates the importance of accessible N-sites in sensing via portraying framework-analyte supramolecular interactions.
Collapse
Affiliation(s)
- Ranadip Goswami
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| | - Kannimuthu Karthick
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Sandeep Das
- Discipline of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Sonal Rajput
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| | - Nilanjan Seal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| | - Biswarup Pathak
- Discipline of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
9
|
Shaheen Shah S, Abdul Aziz M, Al-Betar AR, Mahfoz W. Electrodeposition of polyaniline on high electroactive indium tin oxide nanoparticles-modified fluorine doped tin oxide electrode for fabrication of high-performance hybrid supercapacitor. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
10
|
Zhou YN, Zhao HY, Wang HY, Nan J, Dong B, Wang FG, Dong YW, Liu B, Chai YM. Active Microstructure Transformation and Enhanced Stability of Iron Foam Derived from Industrial Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17229-17239. [PMID: 35385258 DOI: 10.1021/acsami.2c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tracking microstructure transformation under industrial conditions is significant and urgent for the development of oxygen evolution reaction (OER) catalysts. Herein, employing iron foam (IF) as an object, we closely monitor related morphologies and composition evolution under 300 mA cm-2 at 40 °C (IF-40-t)/80 °C (IF-80-t) in 6 M KOH and find that the OER activity first increases and then decreases with the continuous generation of FeOOH. Moreover, the reasons for different tendencies of Tafel slope, double-layer capacitance, and impedance for IF-40-t/IF-80-t have been investigated thoroughly. In detail, the OER activity of IF-40-t is governed by electron and mass transport, while for IF-80-t, the dominating factor is electron transfer. Further, to improve the stability, guided by the above results, two versatile methods that do not sacrifice electron and mass transport have been proposed: surface coating and dynamic interface construction. The synchronous improvements of stability and activity are deeply revealed, which may provide inspiration for catalyst design for industrial applications.
Collapse
Affiliation(s)
- Ya-Nan Zhou
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hui-Ying Zhao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hui-Ying Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Jun Nan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
- CNOOC Tianjin Chemical Research and Design Institute Co., Ltd., Tianjin 300131, P. R. China
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Feng-Ge Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yi-Wen Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Bin Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
11
|
Mo B, Li S, Wen H, Zhang H, Zhang H, Wu J, Li B, Hou H. Functional Group Regulated Ni/Ti 3C 2T x (T x = F, -OH) Holding Bimolecular Activation Tunnel for Enhanced Ammonia Borane Hydrolysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16320-16329. [PMID: 35352551 DOI: 10.1021/acsami.2c02594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing economical and efficient catalyst for hydrogen generation from ammonia borane (AB) hydrolysis is still a huge challenge. As an alternative strategy, the functional group regulation of metal nanoparticles (NPs)-based catalysts is believed to be capable of improving the catalytic activity. Herein, a series of Ni/Ti3C2Tx-Y (Tx = F, -OH; Y denotes etching time (d)) catalysts are synthesized and show remarkably enhanced catalytic activity on the hydrolysis of AB in contrast to the corresponding without regulating. The optimized Ni/Ti3C2Tx-4 with a turnover frequency (TOF) value of 161.0 min-1 exhibits the highest catalytic activity among the non-noble monometallic-based catalyst. Experimental results and theory calculations demonstrate that the excellent catalytic activity benefits from the bimolecular activation channels formed by Ni NPs and Ti3C2Tx-Y. H2O and AB molecules are activated simultaneously in the bimolecular activation tunnel. Bimolecular activation reduces the activation energy of AB hydrolysis, and hydrogen generation rate is promoted. This article provides a new approach to design effective catalysts and further supports the bimolecular activation model for the hydrolysis of AB.
Collapse
Affiliation(s)
- Bingyan Mo
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuwen Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Wen
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Heyao Zhang
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Wu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hongwei Hou
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Sun H, Zhu Y, Jung W. Tuning Reconstruction Level of Precatalysts to Design Advanced Oxygen Evolution Electrocatalysts. Molecules 2021; 26:molecules26185476. [PMID: 34576947 PMCID: PMC8469832 DOI: 10.3390/molecules26185476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022] Open
Abstract
Surface reconstruction engineering is an effective strategy to promote the catalytic activities of electrocatalysts, especially for water oxidation. Taking advantage of the physicochemical properties of precatalysts by manipulating their structural self-reconstruction levels provide a promising methodology for achieving suitable catalysts. In this review, we focus on recent advances in research related to the rational control of the process and level of surface transformation ultimately to design advanced oxygen evolution electrocatalysts. We start by discussing the original contributions to surface changes during electrochemical reactions and related factors that can influence the electrocatalytic properties of materials. We then present an overview of current developments and a summary of recently proposed strategies to boost electrochemical performance outcomes by the controlling structural self-reconstruction process. By conveying these insights, processes, general trends, and challenges, this review will further our understanding of surface reconstruction processes and facilitate the development of high-performance electrocatalysts beyond water oxidation.
Collapse
Affiliation(s)
- Hainan Sun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
- Correspondence:
| |
Collapse
|