1
|
Chen C, Ikemoto S, Yokota GI, Higuchi K, Muratsugu S, Tada M. Low-temperature redox activity and alcohol ammoxidation performance on Cu- and Ru-incorporated ceria catalysts. Phys Chem Chem Phys 2024; 26:17979-17990. [PMID: 38814159 DOI: 10.1039/d4cp01432d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Transition-metal-incorporated cerium oxides with Cu and a small amount of Ru (Cu0.18Ru0.05CeOz) were prepared, and their low-temperature redox performance (<423 K) and catalytic alcohol ammoxidation performance were investigated. Temperature-programmed reduction/oxidation under H2/O2 and in situ X-ray absorption fine structure revealed the reversible redox behavior of the three metals, Cu, Ru, and Ce, in the low-temperature redox processes. The initially reduced Ru species decreased the reduction temperature of Cu oxides and promoted the activation of Ce species. Cu0.18Ru0.05CeOz selectively catalyzed the production of benzonitrile in the ammoxidation of benzyl alcohol. H2-treated Cu0.18Ru0.05CeOz showed a slightly larger initial conversion of benzyl alcohol than O2-treated Cu0.18Ru0.05CeOz, suggesting that the reduced structure of Cu0.18Ru0.05CeOz was active for the ammoxidation. The integration of both Cu and Ru resulted in the efficient promotion of ammoxidation, in which the Ru species were involved in the conversion of benzyl alcohol and Cu species were required for selective production of benzonitrile.
Collapse
Affiliation(s)
- Chaoqi Chen
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Satoru Ikemoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Gen-Ichi Yokota
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Kimitaka Higuchi
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Satoshi Muratsugu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science (RCMS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
2
|
Wang X, Li R, Luo X, Mu J, Peng J, Yan G, Wei P, Tian Z, Huang Z, Cao Z. Enhanced CO oxidation performance over hierarchical flower-like Co 3O 4 based nanosheets via optimizing oxygen activation and CO chemisorption. J Colloid Interface Sci 2024; 654:454-465. [PMID: 37857098 DOI: 10.1016/j.jcis.2023.10.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Enhancing low-temperature activity is a focus for carbon monoxide (CO) elimination by catalytic oxidation. In this work, the hierarchical flower-like silver (Ag) modified cobalt oxides (Co3O4) nanosheets were prepared by solvothermal method and applied into catalytic CO oxidation. The doped Ag species in the form of AgCoO2 induced the prolongated surface Co-O bond and weaker bond intensity. Consequently, the oxygen activation/migration ability and redox capacity of Ag0.02Co were enhanced with more oxygen vacancies. The chemisorbed CO was preferentially converted to CO2 but not carbonates. The inhibited carbonates accumulation could avoid the coverage of active sites. According to Density functional theory (DFT) calculations, the electron transfer from AgCoO2 to Co3O4 promote electron donation ability of Co3O4 layer, benefiting for oxygen activation. Moreover, the longer Co-C and C-O bond length suggest the weakened chemisorption strength and higher active of CO molecule. The Ag modified Co3O4 exhibited more satisfactory activity at lower temperature. Typically, it realized 100% CO conversion at 90 °C, and displayed 6.3-fold higher reaction rate than pristine Co3O4 at 40 °C. Moreover, the Ag0.02Co exhibited outstanding long-term stability and water resistance. In summary, the optimized oxygen activation, CO chemisorption and interfacial electron transfer synergistically boosted the CO oxidation activity on Ag modified Co3O4.
Collapse
Affiliation(s)
- Xinyang Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Rui Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinyu Luo
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jincheng Mu
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Jianbiao Peng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guangxuan Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengkun Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhenbang Tian
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou, Henan 450002, China
| | - Zuohua Huang
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou, Henan 450002, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
3
|
Zhuang K, Jin P, Yang L, Yao J, Yu L, Sheng Z, Chu X, Zhuang Z, Chen X. Different morphologies on Cu-Ce/TiO 2 catalysts for the selective catalytic reduction of NO x with NH 3 and DRIFTS study on sol-gel nanoparticles. RSC Adv 2023; 13:25989-26000. [PMID: 37664208 PMCID: PMC10472399 DOI: 10.1039/d3ra03018k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
The copper-cerium binary oxide catalysts supported by titanium dioxide with nanosphere core-shell structures, nanotube (TNT) core-shell structures, impregnation (imp) nanoparticles and sol-gel nanoparticles were prepared for NH3-SCR of NOx under medium-low temperature conditions. The effect of different morphologies on the Cu-Ce/TiO2 catalysts was comprehensively studied through physicochemical characterization. The results showed that the sol-gel nanoparticles exhibited 100% NOx reduction efficiency in the temperature range of 180-400 °C. Compared with the other catalysts, the sol-gel nanoparticle catalyst had the highest dispersion and lowest crystallinity, indicating that morphology played an important role in the NH3-SCR of the catalyst. The in situ DRIFTS study on the sol-gel nanoparticle catalyst shows that cerium could promote Cu2+ to produce abundant Lewis acid sites, which would significantly increase the adsorption reaction of ammonia on the catalyst surface, thereby promoting the occurrence of the Eley-Rideal (E-R) mechanism. With the Ce-Ti interaction on the atomic scale, the Ce-O-Ti structure enhanced the redox properties at a medium temperature. In addition, cerium oxide enhances the strong interaction between the catalyst matrix and CuO particles. Therefore, the reducibility of the CuO species was enhanced.
Collapse
Affiliation(s)
- Ke Zhuang
- State Power Environmental Protection Research Institute Nanjing 210031 Jiangsu China
| | - Pengkai Jin
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University Nanjing 210023 Jiangsu China
| | - Liu Yang
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University Nanjing 210023 Jiangsu China
| | - Jie Yao
- State Power Environmental Protection Research Institute Nanjing 210031 Jiangsu China
| | - Lemeng Yu
- State Power Environmental Protection Research Institute Nanjing 210031 Jiangsu China
| | - Zhongyi Sheng
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University Nanjing 210023 Jiangsu China
- College of Chemistry & Environmental Sciences, Yili Normal University Yining 835000 Xinjiang China
| | - Xinyue Chu
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University Nanjing 210023 Jiangsu China
| | - Zhipeng Zhuang
- Guangzhou HuaKe Environmental Protection Engineering Co Ltd Guangzhou 510655 Guangdong China
- South China Institute of Environmental Science, Ministry of Ecology and Environment Guangzhou 510655 Guangdong China
| | - Xiongbo Chen
- South China Institute of Environmental Science, Ministry of Ecology and Environment Guangzhou 510655 Guangdong China
| |
Collapse
|
4
|
Liu Z, Yang J, Wen Y, Lan Y, Guo L, Chen X, Cao K, Chen R, Shan B. Promotional Effect of H 2 Pretreatment on the CO PROX Performance of Pt 1/Co 3O 4: A First-Principles-Based Microkinetic Analysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27762-27774. [PMID: 35674013 DOI: 10.1021/acsami.2c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomic Pt studded on cobalt oxide is a promising catalyst for CO preferential oxidation (PROX) dependent on its surface treatment. In this work, the CO PROX reaction mechanism on Co3O4 supported single Pt atom is investigated by a comprehensive first-principles based microkinetic analysis. It is found that as synthesized Pt1/Co3O4 interface is poisoned by CO in a wide low temperature window, leading to its low reactivity. The CO poisoning effect can be effectively mitigated by a H2 prereduction treatment, that exposes Co ∼ Co dimer sites for a noncompetitive Langmuir-Hinshelhood mechanism. In addition, surface H atoms assist O2 dissociation via "twisting" mechanism, avoiding the high barriers associated with direct O2 dissociation path. Microkinetic analysis reveals that the promotion of H-assisted pathway on H2 treated sample helps improve the activity and selectivity at low temperatures.
Collapse
Affiliation(s)
- Zhang Liu
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
- School of Environmental Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Jiaqiang Yang
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Yanwei Wen
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Yuxiao Lan
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Limin Guo
- School of Environmental Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Xi Chen
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Kun Cao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Rong Chen
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Bin Shan
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| |
Collapse
|
5
|
Basak S, Sikdar S, Ali S, Mondal M, Roy D, Dakua VK, Roy MN. Synthesis and characterization of Mo xFe 1−xO nanocomposites for the ultra-fast degradation of methylene blue via a Fenton-like process: a green approach. NEW J CHEM 2022. [DOI: 10.1039/d2nj02720h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A detailed degradation study of methylene blue within 22 minutes by the green synthesis of MoxFe1−xO nanocomposites using Punica granatum peel extract.
Collapse
Affiliation(s)
- Shatarupa Basak
- Department of Chemistry, University of North Bengal, Darjeeling-734013, West Bengal, India
| | - Suranjan Sikdar
- Department of Chemistry, Govt. General Degree College, Kushmandi, Dakshin Dinajpur-733121, West Bengal, India
| | - Salim Ali
- Department of Chemistry, University of North Bengal, Darjeeling-734013, West Bengal, India
| | - Modhusudan Mondal
- Department of Chemistry, University of North Bengal, Darjeeling-734013, West Bengal, India
| | - Debadrita Roy
- Department of Chemistry, University of North Bengal, Darjeeling-734013, West Bengal, India
| | - Vikas Kumar Dakua
- Department of Chemistry, Alipurduar University, Alipurduar-736122, West Bengal, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling-734013, West Bengal, India
- Alipurduar University, Alipurduar-736122, West Bengal, India
| |
Collapse
|