1
|
Hu X, Pollice L, Ronchi A, Roccanova M, Mauri M, Lardani D, Vanhecke D, Monguzzi A, Weder C. Confinement-Enhanced Multi-Wavelength Photon Upconversion Based on Triplet-Triplet Annihilation in Nanostructured Glassy Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415160. [PMID: 39950941 PMCID: PMC11984915 DOI: 10.1002/advs.202415160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Indexed: 04/12/2025]
Abstract
Sensitized triplet-triplet annihilation photon upconversion (sTTA-UC) allows blue-shifting non-coherent low-intensity light and is potentially useful in solar-powered devices, bioimaging, 3D printing, and other applications. For technologically viable solar energy harvesting systems, solid materials that capture a large fraction of the solar spectrum and efficiently upconvert the absorbed energy must be developed. Here, it is shown that broadband-to-blue UC is possible in air-tolerant, easy-to-access, nanostructured polymers comprising a rigid hydrophilic matrix and liquid nanodroplets with dimensions on the order of tens of nanometers. The droplets contain 9,10-bis[(triisopropylsilyl)ethynyl] anthracene (TIPS-Ac) as emitter/annihilator and palladium(II) octaethyl porphyrin (PdOEP) and palladium(II) meso-tetraphenyl tetrabenzoporphine (PdTPBP) as sensitizers. The confinement of the three dyes in the liquid domains renders the various bimolecular energy transfer processes that are pivotal for the TIPS-Ac's triplet sensitization highly efficient, and the simultaneous use of multiple light harvesters with triplet energy levels resonant with the emitter/annihilator increases the absorption bandwidth to ca. 150 nm. The UC process at low power densities is most efficient when both sensitizers are simultaneously excited, thanks to their confinement in the nanodroplets, which leads to an increase in the triplet density, and therefore TTA rate and yield, optimizing the use of the harvested energy.
Collapse
Affiliation(s)
- Xueqian Hu
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| | - Luca Pollice
- Dipartimento di Scienza dei MaterialiUniversità degli Studi Milano‐BicoccaVia Roberto Cozzi 55Milano20125Italy
| | - Alessandra Ronchi
- Dipartimento di Scienza dei MaterialiUniversità degli Studi Milano‐BicoccaVia Roberto Cozzi 55Milano20125Italy
| | - Marco Roccanova
- Dipartimento di Scienza dei MaterialiUniversità degli Studi Milano‐BicoccaVia Roberto Cozzi 55Milano20125Italy
| | - Michele Mauri
- Dipartimento di Scienza dei MaterialiUniversità degli Studi Milano‐BicoccaVia Roberto Cozzi 55Milano20125Italy
| | - Davide Lardani
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| | - Dimitri Vanhecke
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| | - Angelo Monguzzi
- Dipartimento di Scienza dei MaterialiUniversità degli Studi Milano‐BicoccaVia Roberto Cozzi 55Milano20125Italy
| | - Christoph Weder
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| |
Collapse
|
2
|
Zuo R, Ye Z, Liang H, Huo Y, Ji S. High-efficiency triplet-triplet annihilation upconversion microemulsion with facile preparation and decent air tolerance. Photochem Photobiol Sci 2024; 23:1309-1321. [PMID: 38839722 DOI: 10.1007/s43630-024-00596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
Current research of triplet-triplet annihilation upconversion (TTA-UC) faces difficulty such as overuse of organic solvents and quenching of excited triplet sensitizers by molecular oxygen. Herein, we propose an efficient and facile preparation strategy of TTA-UC microemulsion to overcome these issues. With simple device and short preparation process, air-stable TTA-UC with a high upconversion efficiency of 16.52% was achieved in microemulsion coassembled from TritonX114, tetrahydrofuran and upconverting chromophores (platinum octaethyl-porphyrin and 9,10-diphenylanthracene). This is comparable to the highest UC efficiency ever reported for TTA-UC microemulsion systems. The excellent UC performance of TX114-THF could be attributed to two perspectives. Firstly, small-size micelle accommodated chromophores up to high concentrations in organic phase, which promoted efficient molecular collision. Additionally, high absorbance at 532 nm ensured full use of excitation light, getting more long wavelength photons involved in the TTA-UC process. Moreover, air-stable TTA-UC also performed well in microemulsion with various surfactants, including nonionic surfactants (Tween 20, Tween 80, Triton X-110, Triton X-114), ionic surfactants (sodium dodecyl sulfate, cetyltrimethyl ammonium bromide) and block copolymers (pluronic F127, pluronic P123), through three conjectural assembly models according to the structural characteristics of surfactant molecules (concentrated, uncompacted and scattered). These discoveries could provide estimable reference for selection of surfactants in relevant fields of TTA-UC.
Collapse
Affiliation(s)
- Renjie Zuo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Zecong Ye
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China.
| | - Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China.
| |
Collapse
|
3
|
Honda J, Sugawa K, Tahara H, Otsuki J. Plasmonic Metal Nanostructures Meet Triplet-Triplet Annihilation-Based Photon Upconversion Systems: Performance Improvements and Application Trends. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091559. [PMID: 37177104 PMCID: PMC10181111 DOI: 10.3390/nano13091559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Improving the performance of upconversion systems based on triplet-triplet annihilation (TTA-UC) can have far-reaching implications for various fields, including solar devices, nano-bioimaging, and nanotherapy. This review focuses on the use of localized surface plasmon (LSP) resonance of metal nanostructures to enhance the performance of TTA-UC systems and explores their potential applications. After introducing the basic driving mechanism of TTA-UC and typical sensitizers used in these systems, we discuss recent studies that have utilized new sensitizers with distinct characteristics. Furthermore, we confirm that the enhancement in upconverted emission can be explained, at least in part, by the mechanism of "metal-enhanced fluorescence", which is attributed to LSP resonance-induced fluorescence enhancement. Next, we describe selected experiments that demonstrate the enhancement in upconverted emission in plasmonic TTA-UC systems, as well as the emerging trends in their application. We present specific examples of studies in which the enhancement in upconverted emission has significantly improved the performance of photocatalysts under both sunlight and indoor lighting. Additionally, we discuss the potential for future developments in plasmonic TTA-UC systems.
Collapse
Affiliation(s)
- Jotaro Honda
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan
| | - Kosuke Sugawa
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan
| | - Hironobu Tahara
- Graduate School of Engineering, Nagasaki University, Bunkyo, Nagasaki 852-8521, Japan
| | - Joe Otsuki
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan
| |
Collapse
|
4
|
Schloemer T, Narayanan P, Zhou Q, Belliveau E, Seitz M, Congreve DN. Nanoengineering Triplet-Triplet Annihilation Upconversion: From Materials to Real-World Applications. ACS NANO 2023; 17:3259-3288. [PMID: 36800310 DOI: 10.1021/acsnano.3c00543] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Using light to control matter has captured the imagination of scientists for generations, as there is an abundance of photons at our disposal. Yet delivering photons beyond the surface to many photoresponsive systems has proven challenging, particularly at scale, due to light attenuation via absorption and scattering losses. Triplet-triplet annihilation upconversion (TTA-UC), a process which allows for low energy photons to be converted to high energy photons, is poised to overcome these challenges by allowing for precise spatial generation of high energy photons due to its nonlinear nature. With a wide range of sensitizer and annihilator motifs available for TTA-UC, many researchers seek to integrate these materials in solution or solid-state applications. In this Review, we discuss nanoengineering deployment strategies and highlight their uses in recent state-of-the-art examples of TTA-UC integrated in both solution and solid-state applications. Considering both implementation tactics and application-specific requirements, we identify critical needs to push TTA-UC-based applications from an academic curiosity to a scalable technology.
Collapse
Affiliation(s)
- Tracy Schloemer
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Pournima Narayanan
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Qi Zhou
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Emma Belliveau
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Michael Seitz
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Daniel N Congreve
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Goudarzi H, Koutsokeras L, Balawi AH, Sun C, Manolis GK, Gasparini N, Peisen Y, Antoniou G, Athanasopoulos S, Tselios CC, Falaras P, Varotsis C, Laquai F, Cabanillas-González J, Keivanidis PE. Microstructure-driven annihilation effects and dispersive excited state dynamics in solid-state films of a model sensitizer for photon energy up-conversion applications. Chem Sci 2023; 14:2009-2023. [PMID: 36845913 PMCID: PMC9945257 DOI: 10.1039/d2sc06426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Bimolecular processes involving exciton spin-state interactions gain attention for their deployment as wavelength-shifting tools. Particularly triplet-triplet annihilation induced photon energy up-conversion (TTA-UC) holds promise to enhance the performance of solar cell and photodetection technologies. Despite the progress noted, a correlation between the solid-state microstructure of photoactuating TTA-UC organic composites and their photophysical properties is missing. This lack of knowledge impedes the effective integration of functional TTA-UC interlayers as ancillary components in operating devices. We here investigate a solution-processed model green-to-blue TTA-UC binary composite. Solid-state films of a 9,10 diphenyl anthracene (DPA) blue-emitting activator blended with a (2,3,7,8,12,13,17,18-octaethyl-porphyrinato) PtII (PtOEP) green-absorbing sensitizer are prepared with a range of compositions and examined by a set of complementary characterization techniques. Grazing incidence X-ray diffractometry (GIXRD) measurements identify three PtOEP composition regions wherein the DPA:PtOEP composite microstructure varies due to changes in the packing motifs of the DPA and PtOEP phases. In Region 1 (≤2 wt%) DPA is semicrystalline and PtOEP is amorphous, in Region 2 (between 2 and 10 wt%) both DPA and PtOEP phases are amorphous, and in Region 3 (≥10 wt%) DPA remains amorphous and PtOEP is semicrystalline. GIXRD further reveals the metastable DPA-β polymorph species as the dominant DPA phase in Region 1. Composition dependent UV-vis and FT-IR measurements identify physical PtOEP dimers, irrespective of the structural order in the PtOEP phase. Time-gated photoluminescence (PL) spectroscopy and scanning electron microscopy imaging confirm the presence of PtOEP aggregates, even after dispersing DPA:PtOEP in amorphous poly(styrene). When arrested in Regions 1 and 2, DPA:PtOEP exhibits delayed PtOEP fluorescence at 580 nm that follows a power-law decay on the ns time scale. The origin of PtOEP delayed fluorescence is unraveled by temperature- and fluence-dependent PL experiments. Triplet PtOEP excitations undergo dispersive diffusion and enable TTA reactions that activate the first singlet-excited (S1) PtOEP state. The effect is reproduced when PtOEP is mixed with a poly(fluorene-2-octyl) (PFO) derivative. Transient absorption measurements on PFO:PtOEP films find that selective PtOEP photoexcitation activates the S1 of PFO within ∼100 fs through an up-converted 3(d, d*) PtII-centered state.
Collapse
Affiliation(s)
- Hossein Goudarzi
- Centre for Nano Science and Technology @PoliMi, Fondazione Istituto Italiano di Tecnologia 20133 Milano Italy
| | - Loukas Koutsokeras
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| | - Ahmed H Balawi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) 23955-6900 Thuwal Kingdom of Saudi Arabia
| | - Chen Sun
- IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco Calle Faraday 9 ES 28049 Madrid Spain
| | - Giorgos K Manolis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos" 15341 Agia Paraskevi Athens Greece
| | - Nicola Gasparini
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) 23955-6900 Thuwal Kingdom of Saudi Arabia
- Department of Chemistry, Centre for Processable Electronics, Imperial College London W120BZ UK
| | - Yuan Peisen
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| | - Giannis Antoniou
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| | | | - Charalampos C Tselios
- Environmental Biocatalysis and Biotechnology Laboratory, Department of Chemical Engineering, Cyprus University of Technology 3603 Limassol Cyprus
| | - Polycarpos Falaras
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos" 15341 Agia Paraskevi Athens Greece
| | - Constantinos Varotsis
- Environmental Biocatalysis and Biotechnology Laboratory, Department of Chemical Engineering, Cyprus University of Technology 3603 Limassol Cyprus
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) 23955-6900 Thuwal Kingdom of Saudi Arabia
| | | | - Panagiotis E Keivanidis
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| |
Collapse
|
6
|
Vaghi L, Rizzo F, Pedrini J, Mauri A, Meinardi F, Cosentino U, Greco C, Monguzzi A, Papagni A. Bypassing the statistical limit of singlet generation in sensitized upconversion using fluorinated conjugated systems. Photochem Photobiol Sci 2022; 21:913-921. [PMID: 35488979 DOI: 10.1007/s43630-022-00225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
The photon upconversion based on triplet-triplet annihilation (TTA) is a mechanism that converts the absorbed low-energy electromagnetic radiation into higher energy photons also at extremely low excitation intensities, but its use in actual technologies is still hindered by the limited availability of efficient annihilator moieties. We present here the results obtained by the synthesis and application of two new fluorinated chromophores based on phenazine and acridine structures, respectively. Both compounds show upconverted emission demonstrating their ability as TTA annihilator. More interesting, the acridine-based chromophore shows an excellent TTA yield that overcomes the one of some of best model systems. By correlating the experimental data and the quantum mechanical modeling of the investigated compound, we propose an alternative efficient pathway for the generation of the upconverted emissive states involving the peculiar high-energy triplet levels of the dye, thus suggesting a new development strategy for TTA annihilators based on the fine tuning of their high-energy excited states properties.
Collapse
Affiliation(s)
- Luca Vaghi
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milan, Italy
| | - Fabio Rizzo
- Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC), Consiglio Nazionale delle Ricerche (CNR), via G. Fantoli 16/15, 20138, Milan, Italy
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Jacopo Pedrini
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milan, Italy
| | - Anna Mauri
- Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi Milano-Bicocca, Milano, Piazza della Scienza 1 e 4, 20126, Milan, Italy
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Francesco Meinardi
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milan, Italy
| | - Ugo Cosentino
- Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi Milano-Bicocca, Milano, Piazza della Scienza 1 e 4, 20126, Milan, Italy
| | - Claudio Greco
- Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi Milano-Bicocca, Milano, Piazza della Scienza 1 e 4, 20126, Milan, Italy
| | - Angelo Monguzzi
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milan, Italy.
| | - Antonio Papagni
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milan, Italy.
| |
Collapse
|
7
|
Electronic Couplings for Singlet Oxygen Photosensitization and Its Molecular Orbital Overlap Description. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2112290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
8
|
Yin W, Yu T, Chen J, Hu R, Yang G, Zeng Y, Li Y. Thermally Activated Upconversion with Metal-Free Sensitizers Enabling Exceptional Anti-Stokes Shift and Anti-counterfeiting Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57481-57488. [PMID: 34841866 DOI: 10.1021/acsami.1c19181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photochemical upconversion (UC) via triplet-triplet annihilation (TTA) has attracted considerable attention for its potential applications in solar energy conversion, photocatalysis, and bioimaging. Achieving a large anti-Stokes shift in photochemical UC is appealing but still a great challenge, especially for purely organic sensitizers. Here, we develop solid-state TTA UC systems with metal- and heavy atom-free dyes as the sensitizers, which sensitize the 9,10-diphenylanthracene acceptor through thermally activated triplet-triplet energy transfer. Solid-state UC emission with remarkable anti-Stokes shifts up to 1.10 eV is achieved owing to an evident enthalpy gain by the endothermic sensitization. The solid upconverter shows air-stable UC emission and potentials in dual-mode anti-counterfeiting and encryption applications. The present UC approach involving thermally activated sensitization enabled by purely organic dyes provides a versatile strategy to develop TTA UC materials with large anti-Stokes shift, air-tolerant emission, and environmental compatibility, which would have promising applications in information encryption, photochemical conversion, and bioimaging.
Collapse
Affiliation(s)
- Wenxia Yin
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Tianjun Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinping Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Hu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoqiang Yang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Yi Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| |
Collapse
|