1
|
Kirchartz T. Challenges and opportunities for the characterization of electronic properties in halide perovskite solar cells. Chem Sci 2025; 16:8153-8195. [PMID: 40308956 PMCID: PMC12038434 DOI: 10.1039/d5sc00504c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Characterisation of the electronic properties of halide perovskites is often a dilemma for researchers. Many of the data analysis methods for the most common techniques in semiconductor device physics have a small validity window or are generally only applicable to classical doped semiconductors. As alternative data analysis approaches are often prohibitively complicated and require numerical simulations of electronic and often ionic charge carriers, the analysis of data is performed qualitatively and comparatively. The overarching idea is that even if data analysis methods do not apply to a given sample, the trend should still be maintained. However, even this last statement may not be correct in certain situations. Hence, the present review provides a summary of the canonical, frequently used methods to characterise electronic properties in halide perovskites and provides a short explanation of the pitfalls in applying the method, as well as the opportunities that arise from using these methods in ways that are not yet common in the current literature.
Collapse
Affiliation(s)
- Thomas Kirchartz
- IMD-3 Photovoltaics, Forschungszentrum Jülich 52425 Jülich Germany
- Faculty of Engineering and CENIDE, University of Duisburg-Essen Carl-Benz-Str. 199 47057 Duisburg Germany
| |
Collapse
|
2
|
Fereiro JA, Tomita M, Bendikov T, Bera S, Pecht I, Sheves M, Cahen D, Ishii H. Protein Electronic Energy Transport Levels Derived from High-Sensitivity Near-UV and Constant Final State Yield Photoemission Spectroscopy. SMALL METHODS 2025; 9:e2401204. [PMID: 39659110 DOI: 10.1002/smtd.202401204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Proteins are attractive as functional components in molecular junctions. However, controlling the electronic charge transport via proteins, held between two electrodes, requires information on their frontier orbital energy level alignment relative to the electrodes' Fermi level (EF), which normally requires studies of UV Photoemission Spectroscopy (UPS) with HeI excitation. Such excitation is problematic for proteins, which can denature under standard measuring conditions. Here high-sensitivity soft UV photoemission spectroscopy (HS-UPS) combined with Constant Final State Yield Spectroscopy (CFS-YS) is used to get this information for electrode/protein contacts. Monolayers of the redox protein Azurin, (Az) and its Apo-form on Au substrates, have HOMO onset energies, obtained from CFS-YS, differ by ≈0.2 eV, showing the crucial role of the Cu redox centre in the electron transport process. It is found that combined HS-UPS/CFS-YS measurements agree with the Photoelectron Yield Spectroscopy (PYS), showing potential of the HS-UPS + CFS-YS as a powerful tool to characterize and map the energetics of a protein-electrode interfaces, which will aid optimizing design of devices with targeted electronic properties, as well as for novel applications.
Collapse
Affiliation(s)
- Jerry A Fereiro
- School of Chemistry, Indian Inst. of Science Education & Research, Thiruvananthapuram, Kerala, 695551, India
- Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot, 7610001, Israel
| | - Masaki Tomita
- Graduate School of Science and Engineering, Chiba University, Chiba, 263-8522, Japan
| | - Tatyana Bendikov
- Department of Chemical Research Support, Weizmann Inst. of Science, Rehovot, 7610001, Israel
| | - Sudipta Bera
- Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot, 7610001, Israel
| | - Israel Pecht
- Department of Immunology & Regenerative Biology, Weizmann Inst. of Science, Rehovot, 7610001, Israel
| | - Mordechai Sheves
- Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot, 7610001, Israel
| | - David Cahen
- Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot, 7610001, Israel
| | - Hisao Ishii
- Graduate School of Science and Engineering, Chiba University, Chiba, 263-8522, Japan
- Center for Frontier Science, Chiba University, Chiba, 263-8522, Japan
| |
Collapse
|
3
|
Levine I, Menzel D, Musiienko A, MacQueen R, Romano N, Vasquez-Montoya M, Unger E, Mora Perez C, Forde A, Neukirch AJ, Korte L, Dittrich T. Revisiting Sub-Band Gap Emission Mechanism in 2D Halide Perovskites: The Role of Defect States. J Am Chem Soc 2024; 146:23437-23448. [PMID: 39115182 PMCID: PMC11345761 DOI: 10.1021/jacs.4c06621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024]
Abstract
Understanding the sub-band gap luminescence in Ruddlesden-Popper 2D metal halide hybrid perovskites (2D HaPs) is essential for efficient charge injection and collection in optoelectronic devices. Still, its origins are still under debate with respect to the role of self-trapped excitons or radiative recombination via defect states. In this study, we characterized charge separation, recombination, and transport in single crystals, exfoliated layers, and polycrystalline thin films of butylammonium lead iodide (BA2PbI4), one of the most prominent 2D HaPs. We combined complementary defect- and exciton-sensitive methods such as photoluminescence (PL) spectroscopy, modulated and time-resolved surface photovoltage (SPV) spectroscopy, constant final state photoelectron yield spectroscopy (CFSYS), and constant light-induced magneto transport (CLIMAT), to demonstrate striking differences between charge separation induced by dissociation of excitons and by excitation of mobile charge carriers from defect states. Our results suggest that the broad sub-band gap emission in BA2PbI4 and other 2D HaPs is caused by radiative recombination via defect states (shallow as well as midgap states) rather than self-trapped excitons. Density functional theory (DFT) results show that common defects can readily occur and produce an energetic profile that agrees well with the experimental results. The DFT results suggest that the formation of iodine interstitials is the initial process leading to degradation, responsible for the emergence of midgap states, and that defect engineering will play a key role in enhancing the optoelectronic properties of 2D HaPs in the future.
Collapse
Affiliation(s)
- Igal Levine
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Division Solar Energy, Kekuléstraße 5, 12489 Berlin, Germany
- Institute
of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Dorothee Menzel
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Division Solar Energy, Kekuléstraße 5, 12489 Berlin, Germany
| | - Artem Musiienko
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Division Solar Energy, Kekuléstraße 5, 12489 Berlin, Germany
| | - Rowan MacQueen
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Division Solar Energy, Kekuléstraße 5, 12489 Berlin, Germany
| | - Natalia Romano
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Division Solar Energy, Kekuléstraße 5, 12489 Berlin, Germany
| | - Manuel Vasquez-Montoya
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Division Solar Energy, Kekuléstraße 5, 12489 Berlin, Germany
| | - Eva Unger
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Division Solar Energy, Kekuléstraße 5, 12489 Berlin, Germany
| | - Carlos Mora Perez
- Theoretical
Physics and chemistry of Materials, Los
Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Aaron Forde
- Theoretical
Physics and chemistry of Materials, Los
Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Amanda J. Neukirch
- Theoretical
Physics and chemistry of Materials, Los
Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Lars Korte
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Division Solar Energy, Kekuléstraße 5, 12489 Berlin, Germany
| | - Thomas Dittrich
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Division Solar Energy, Kekuléstraße 5, 12489 Berlin, Germany
| |
Collapse
|
4
|
Dong K, Yang G, Wang M, Bian J, Zhu L, Zhang F, Yu S, Liu S, Xiao JD, Guo X, Jiang X. Impact of Dipole Effect on Perovskite Solar Cells. CHEMSUSCHEM 2024; 17:e202301497. [PMID: 38446050 DOI: 10.1002/cssc.202301497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/23/2024] [Indexed: 03/07/2024]
Abstract
Interface modification and bulk doping are two major strategies to improve the photovoltaic performance of perovskite solar cells (PSCs). Dipolar molecules are highly favored due to their unique dipolarity. This review discusses the basic concepts and characteristics of dipoles. In addition, the role of dipoles in PSCs and the corresponding conventional characterization methods for dipoles are introduced. Then, we systematically summarize the latest progress in achieving efficient and stable PSCs in dipole materials at several key interfaces. Finally, we look forward to the future application directions of dipole molecules in PSCs, aiming at providing deep insight and inspiration for developing efficient and stable PSCs.
Collapse
Affiliation(s)
- Kaiwen Dong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Guangyue Yang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Minhuan Wang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Jiming Bian
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Lina Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., LTD & Shandong Yellow Triangle Biotechnology Industry Research Institute Co., LTD, Dongying, 257335, China
| | - Shitao Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shiwei Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Anhui University Hefei, Anhui, 230601, P. R. China
| | - Xin Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Xiaoqing Jiang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
5
|
Bagha G, Samavati K, Naffakh-Moosavy H, Matin LF. Controlling surface morphology of Ag-doped ZnO as a buffer layer by dispersion engineering in planar perovskite solar cells. Sci Rep 2024; 14:4617. [PMID: 38409468 PMCID: PMC10897408 DOI: 10.1038/s41598-024-55379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
In recent years, the power conversion efficiency (PCE (%)) of perovskite solar cells (PSCs) has improved to over 26%. To enhance the photovoltaic properties of PSCs, several materials for the electron transport layer (ETL) have been investigated. Zinc oxide (ZnO) is a significant ETL due to its high electron mobility and optical transparency in PSCs. As a result of various deposition methods, ZnO ETL can be processed at low temperatures. On the other hand, based on several studies, metal-doped ZnO can facilitate electron transfer, thereby improving the performance of un-doped ZnO ETL-based PSCs. Here, to improve the PCE (%) and long-term stability of un-doped ZnO ETL-PSCs, silver (Ag)-doped ZnO 1wt% as a buffer layer is examined. In this paper, with the addition of an organic solvent (ethanol) to the dispersion of Ag-doped ZnO 1 wt% nanoparticles (NPs) in deionized (DI) water, the morphology of the buffer layer (Ag-doped ZnO 1 wt%) can be controlled. This approach focuses on reducing the wettability of the ZnO/Ag-doped ZnO 1 wt% bilayer ETLs and enhancing the stability of un-doped ZnO ETL-PSCs. According to the results, the ZnO/H2O-ethanol mixtures-Ag-doped ZnO 1 wt% bilayer ETL leads to the formation of high-quality perovskite with low defects, reducing the recombination rate, and long-term stability of un-doped ZnO ETL-PSCs in ambient conditions.
Collapse
Affiliation(s)
- Ghazaleh Bagha
- Department of Physics, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Katayoon Samavati
- Department of Physics, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Homam Naffakh-Moosavy
- Department of Materials Engineering, Tarbiat Modares University (TMU), P.O. Box 14115-143, Tehran, Iran
| | - Laleh Farhang Matin
- Department of Physics, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Yang F, Tockhorn P, Musiienko A, Lang F, Menzel D, Macqueen R, Köhnen E, Xu K, Mariotti S, Mantione D, Merten L, Hinderhofer A, Li B, Wargulski DR, Harvey SP, Zhang J, Scheler F, Berwig S, Roß M, Thiesbrummel J, Al-Ashouri A, Brinkmann KO, Riedl T, Schreiber F, Abou-Ras D, Snaith H, Neher D, Korte L, Stolterfoht M, Albrecht S. Minimizing Interfacial Recombination in 1.8 eV Triple-Halide Perovskites for 27.5% Efficient All-Perovskite Tandems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307743. [PMID: 37988595 DOI: 10.1002/adma.202307743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/06/2023] [Indexed: 11/23/2023]
Abstract
All-perovskite tandem solar cells show great potential to enable the highest performance at reasonable costs for a viable market entry in the near future. In particular, wide-bandgap (WBG) perovskites with higher open-circuit voltage (VOC ) are essential to further improve the tandem solar cells' performance. Here, a new 1.8 eV bandgap triple-halide perovskite composition in conjunction with a piperazinium iodide (PI) surface treatment is developed. With structural analysis, it is found that the PI modifies the surface through a reduction of excess lead iodide in the perovskite and additionally penetrates the bulk. Constant light-induced magneto-transport measurements are applied to separately resolve charge carrier properties of electrons and holes. These measurements reveal a reduced deep trap state density, and improved steady-state carrier lifetime (factor 2.6) and diffusion lengths (factor 1.6). As a result, WBG PSCs achieve 1.36 V VOC , reaching 90% of the radiative limit. Combined with a 1.26 eV narrow bandgap (NBG) perovskite with a rubidium iodide additive, this enables a tandem cell with a certified scan efficiency of 27.5%.
Collapse
Affiliation(s)
- Fengjiu Yang
- Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
- National Renewable Energy Laboratory, Golden, Colorado, 80401, USA
| | - Philipp Tockhorn
- Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
| | - Artem Musiienko
- Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
| | - Felix Lang
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Dorothee Menzel
- Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
| | - Rowan Macqueen
- Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
| | - Eike Köhnen
- Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
| | - Ke Xu
- Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
| | - Silvia Mariotti
- Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
| | - Daniele Mantione
- POLYMAT, University of the Basque Country UPV/EHU, Av. Tolosa 72, Donostia-San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
- POLYKEY s.l., Av. Tolosa 72, Donostia-San Sebastián, 20018, Spain
| | - Lena Merten
- Institute of Applied Physics, University of Tübingen, 72076, Tübingen, Germany
| | | | - Bor Li
- Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
| | - Dan R Wargulski
- Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
| | - Steven P Harvey
- Materials, Chemical and Computational Sciences (MCCS), National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Jiahuan Zhang
- Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
| | - Florian Scheler
- Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
| | - Sebastian Berwig
- Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
| | - Marcel Roß
- Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
| | - Jarla Thiesbrummel
- Clarendon Laboratory, Department of Advanced Materials and Interfaces for Photovoltaic Solar Cells, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Amran Al-Ashouri
- Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
| | - Kai O Brinkmann
- Institute of Electronic Devices, University of Wuppertal, 42119, Wuppertal, Germany
- Wuppertal Center for Smart Materials & Systems, University of Wuppertal, 42119, Wuppertal, Germany
| | - Thomas Riedl
- Institute of Electronic Devices, University of Wuppertal, 42119, Wuppertal, Germany
- Wuppertal Center for Smart Materials & Systems, University of Wuppertal, 42119, Wuppertal, Germany
| | - Frank Schreiber
- Institute of Applied Physics, University of Tübingen, 72076, Tübingen, Germany
| | - Daniel Abou-Ras
- Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
| | - Henry Snaith
- Clarendon Laboratory, Department of Advanced Materials and Interfaces for Photovoltaic Solar Cells, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Dieter Neher
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Lars Korte
- Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
| | - Martin Stolterfoht
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam-Golm, Germany
- Electronic Engineering Department, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Steve Albrecht
- Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
- Faculty of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Das C, Roy R, Kedia M, Kot M, Zuo W, Félix R, Sobol T, Flege JI, Saliba M. Unraveling the Role of Perovskite in Buried Interface Passivation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56500-56510. [PMID: 37991727 DOI: 10.1021/acsami.3c13085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Interfaces in perovskite solar cells play a crucial role in their overall performance, and therefore, detailed fundamental studies are needed for a better understanding. In the case of the classical n-i-p architecture, TiO2 is one of the most used electron-selective layers and can induce chemical reactions that influence the performance of the overall device stack. The interfacial properties at the TiO2/perovskite interface are often neglected, owing to the difficulty in accessing this interface. Here, we use X-rays of variable energies to study the interface of (compact and mesoporous) TiO2/perovskite in such a n-i-p architecture. The X-ray photoelectron spectroscopy and X-ray absorption spectroscopy methods show that the defect states present in the TiO2 layer are passivated by a chemical interaction of the perovskite precursor solution during the formation of the perovskite layer and form an organic layer at the interface. Such passivation of intrinsic defects in TiO2 removes charge recombination centers and shifts the bands upward. Therefore, interface defect passivation by oxidation of Ti3+ states, the organic cation layer, and an upward band bending at the TiO2/perovskite interface explain the origin of an improved electron extraction and hole-blocking nature of TiO2 in the n-i-p perovskite solar cells.
Collapse
Affiliation(s)
- Chittaranjan Das
- Institute for Photovoltaics (ipv), University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
- Helmholtz Young Investigator Group, IEK5-Photovoltaik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rajarshi Roy
- Institute for Photovoltaics (ipv), University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
| | - Mayank Kedia
- Institute for Photovoltaics (ipv), University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
- Helmholtz Young Investigator Group, IEK5-Photovoltaik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Małgorzata Kot
- Chair of Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Zuse-Straße 1, 03046 Cottbus, Germany
| | - Weiwei Zuo
- Institute for Photovoltaics (ipv), University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
| | - Roberto Félix
- Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Tomasz Sobol
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, 31-007 Krakow, Poland
| | - Jan Ingo Flege
- Chair of Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Zuse-Straße 1, 03046 Cottbus, Germany
| | - Michael Saliba
- Institute for Photovoltaics (ipv), University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
- Helmholtz Young Investigator Group, IEK5-Photovoltaik, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
8
|
Mariotti S, Köhnen E, Scheler F, Sveinbjörnsson K, Zimmermann L, Piot M, Yang F, Li B, Warby J, Musiienko A, Menzel D, Lang F, Keßler S, Levine I, Mantione D, Al-Ashouri A, Härtel MS, Xu K, Cruz A, Kurpiers J, Wagner P, Köbler H, Li J, Magomedov A, Mecerreyes D, Unger E, Abate A, Stolterfoht M, Stannowski B, Schlatmann R, Korte L, Albrecht S. Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells. Science 2023; 381:63-69. [PMID: 37410849 DOI: 10.1126/science.adf5872] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/04/2023] [Indexed: 07/08/2023]
Abstract
Improved stability and efficiency of two-terminal monolithic perovskite-silicon tandem solar cells will require reductions in recombination losses. By combining a triple-halide perovskite (1.68 electron volt bandgap) with a piperazinium iodide interfacial modification, we improved the band alignment, reduced nonradiative recombination losses, and enhanced charge extraction at the electron-selective contact. Solar cells showed open-circuit voltages of up to 1.28 volts in p-i-n single junctions and 2.00 volts in perovskite-silicon tandem solar cells. The tandem cells achieve certified power conversion efficiencies of up to 32.5%.
Collapse
Affiliation(s)
- Silvia Mariotti
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Eike Köhnen
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Florian Scheler
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Kári Sveinbjörnsson
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Lea Zimmermann
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Manuel Piot
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
- Laboratory of Semiconductor Materials, Institute of Materials, Faculty of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Fengjiu Yang
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Bor Li
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Jonathan Warby
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Artem Musiienko
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Dorothee Menzel
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Felix Lang
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Sebastian Keßler
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Igal Levine
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Daniele Mantione
- POLYKEY Polymers, Joxe Mari Korta Center, 20018 Donostia-San Sebastian, Spain
- POLYMAT, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Amran Al-Ashouri
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Marlene S Härtel
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Ke Xu
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Alexandros Cruz
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Jona Kurpiers
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Philipp Wagner
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Hans Köbler
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Jinzhao Li
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | | | - David Mecerreyes
- POLYKEY Polymers, Joxe Mari Korta Center, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Eva Unger
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Antonio Abate
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Martin Stolterfoht
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Bernd Stannowski
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Rutger Schlatmann
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Lars Korte
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Steve Albrecht
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
- Technische Universität Berlin, Fakultät Elektrotechnik und Informatik, 10587 Berlin, Germany
| |
Collapse
|
9
|
Ugur E, Ledinský M, Allen TG, Holovský J, Vlk A, De Wolf S. Life on the Urbach Edge. J Phys Chem Lett 2022; 13:7702-7711. [PMID: 35960888 DOI: 10.1021/acs.jpclett.2c01812] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Urbach energy is an expression of the static and dynamic disorder in a semiconductor and is directly accessible via optical characterization techniques. The strength of this metric is that it elegantly captures the optoelectronic performance potential of a semiconductor in a single number. For solar cells, the Urbach energy is found to be predictive of a material's minimal open-circuit-voltage deficit. Performance calculations considering the Urbach energy give more realistic power conversion efficiency limits than from classical Shockley-Queisser considerations. The Urbach energy is often also found to correlate well with the Stokes shift and (inversely) with the carrier mobility of a semiconductor. Here, we discuss key features, underlying physics, measurement techniques, and implications for device fabrication, underlining the utility of this metric.
Collapse
Affiliation(s)
- Esma Ugur
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Martin Ledinský
- Laboratory of Nanostructures and Nanomaterials, Institute of Physics, Academy of Sciences of the Czech Republic, v. v. i., Cukrovarnická 10, Prague, 162 00, Czech Republic
| | - Thomas G Allen
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jakub Holovský
- Centre for Advanced Photovoltaics, Czech Technical University in Prague, Faculty of Electrical Engineering, Technická 2, Prague, 166 27, Czech Republic
| | - Aleš Vlk
- Laboratory of Nanostructures and Nanomaterials, Institute of Physics, Academy of Sciences of the Czech Republic, v. v. i., Cukrovarnická 10, Prague, 162 00, Czech Republic
| | - Stefaan De Wolf
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|