1
|
Zhang S, Cao W, Xu A, Yin L, Zhao Z, Qin Y. Alternating electrodeposition fabrication of graphene-buffered nickel-cobalt layered double hydroxide supercapacitor electrodes with superior rate capability. J Colloid Interface Sci 2025; 689:137270. [PMID: 40080981 DOI: 10.1016/j.jcis.2025.137270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Combining pseudocapacitive materials with carbon materials, such as graphene, is a promising strategy to enhance their performance. In this study, we present a novel and feasible approach involving the alternating electrodeposition of reduced graphene oxide (rGO) and nickel-cobalt layered double hydroxide (NiCo-LDH) onto carbon cloth (CC) current collectors to fabricate binder-free supercapacitor electrodes with a layered LDH/rGO/LDH/rGO/CC architecture. The rGO layers are not only coated on CC substrate to regulate the electrodeposition of LDH nanosheets, but also interposed between the LDH layers to further enhance conductivity and provide buffering effects. The as-prepared electrode achieves a high specific capacitance of 2400 F g-1 at a current density of 1 A g-1, with an outstanding rate capacity retaining 83.1 % of the capacitance at 60 A g-1 and even a retention of 72.5 % at 100 A g-1. Furthermore, the asymmetric supercapacitor configured using the composite electrode and an activated-carbon electrode delivers an energy density of 38.7 Wh kg-1 at a power density of 825 W kg-1, accompanied by excellent cyclic stability with a capacitance retention of 74.4 % after undergoing 10,000 charge/discharge cycles. This work proposes an innovative methodology for fabricating LDH-based functional composites in supercapacitors and other related fields.
Collapse
Affiliation(s)
- Shaoqing Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Weifeng Cao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Aizhen Xu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Li Yin
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Zhiyi Zhao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Yujun Qin
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
2
|
Tao W, Quan H, Tu Z, Zhang Z, Chen D. Crystalline-amorphous hybrid CoNi layered double hydroxides for high areal energy density supercapacitor. J Colloid Interface Sci 2025; 683:1-13. [PMID: 39671894 DOI: 10.1016/j.jcis.2024.12.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Crystalline-amorphous hybrid materials have garnered significant attention in the realm of energy storage, yet simultaneously regulating the morphological and electronic structure of crystalline-amorphous hybrid remains a challenge. Herein, crystalline-amorphous hybrid CoNi-layered double hydroxides (CA-CoNi-LDHs) were constructed by a facile chronoamperometry (i-t) electrochemical activation strategy, which allows for dual modulation of both structural transformations and electronic structure of CoNi-layered double hydroxides (CoNi-LDHs). Experimental results demonstrate that the construction of a crystalline-amorphous hybrid can effectively optimize both the morphological and electronic structure of CoNi-LDHs, expose abundant defects, and raise the concentration of active Ni2+ and Co3+ species, which are conducive to increasing the active sites for energy storage. The reduced adsorption energy for OH-, the increased electron density near the Fermi energy level, coupled with the narrowed bandgap energy of CA-CoNi-LDHs are favorable for accelerating electron transfer and enhancing reaction kinetic. Consequently, the CA-CoNi-LDHs@CC electrode with high mass loading (18.8 mg cm-2) delivers an impressive areal capacitance of 13,070 mF cm-2 at 5 mA cm-2, along with exceptional cycling stability. Moreover, the assembled asymmetric supercapacitor based on CA-CoNi-LDHs@CC possesses a high areal energy density of 0.71 mWh cm-2 at a power density of 3.95 mW cm-2. This work proves that construction of crystalline-amorphous hybrid materials is a viable strategy for achieving high energy density storage.
Collapse
Affiliation(s)
- Wenhao Tao
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Hongying Quan
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China.
| | - Zhengkun Tu
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhixia Zhang
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Dezhi Chen
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
3
|
Huang X, Chu B, Han B, Wu Q, Yang T, Xu X, Wang F, Li B. 2D-on-2D Al-Doped NiCo LDH Nanosheet Arrays for Fabricating High-Energy-Density, Wide Voltage Window, and Ultralong-Lifespan Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401315. [PMID: 38747008 DOI: 10.1002/smll.202401315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/12/2024] [Indexed: 10/01/2024]
Abstract
Battery-type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D-on-2D Al-doped NiCo layered double hydroxide (NiCoAlx LDH) nanosheet arrays with high-mass-loading are grown on a carbon cloth (CC) substrate via a two-step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi-metallic synergistic effect. The optimized NiCoAl0.1 LDH electrode exhibits capacities of 5.43, 6.52, and 7.25 C cm-2 (9.87, 10.88, and 11.15 F cm-2) under 0-0.55, 0-0.60, and 0-0.65 V potential windows, respectively, illustrating clearly the importance of the wide potential window. The differentiated deposition strategy reduces the leaching level of Al3+ cations in alkaline solutions, ensuring excellent cyclic performance (108% capacity retention after 40 000 cycles). The as-assembled NiCoAl0.1 LDH//activated carbon cloth (ACC) hybrid supercapacitor delivers 3.11 C cm-2 at 0-2.0 V, a large energy density of 0.84 mWh cm-2 at a power density of 10.00 mW cm-2, and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles.
Collapse
Affiliation(s)
- Xuejing Huang
- Department School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China
| | - Bingxian Chu
- Department School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China
| | - Boming Han
- Department School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China
| | - Qingqing Wu
- Department School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China
| | - Tianyi Yang
- Department School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China
| | - Xuetang Xu
- Department School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China
| | - Fan Wang
- Department School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China
| | - Bin Li
- Department School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
4
|
Liu H, Chen Q, Chen H, Zhang S, Wang K, Chen Y, Liu H, Zhang C, Shi L, Li H. One-Step Cooperative Growth of High Reaction Kinetics Composite Homogeneous Core-Shell Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307308. [PMID: 38126576 DOI: 10.1002/smll.202307308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Reaction kinetics can be improved by the enhanced electrical contact between different components growing symbiotically. But so far, due to the necessity for material synthesis conditions match, the component structures of cooperative growth are similar, and the materials are of the same type. The collaborative growth of high-reaction kinetics composite homogeneous core-shell heterostructure between various materials is innovatively proposed with different structures in one step. The NiCo-LDH and PPy successfully symbiotically grow on activated carbon fiber fabric in one step. The open channel structure of the NiCo-LDH nanosheets is preserved while PPy effectively wrapped around the NiCo-LDH. The well-defined nanostructure with abundant active sites and convenient ion diffusion paths is favorable for electrolyte entry into the entire nanoarrays. In addition, owing to the enhanced electronic interaction between different components through XPS analysis, the NiCo-LDH@PPy electrode shows outstanding reaction kinetics and structural stability. The as-synthesized NiCo-LDH@PPy exhibited excellent super-capacitive storage capabilities, robust capacitive activity, and good rate survival. Furthermore, an asymmetric supercapacitor (ASC) device made of NiCo-LDH@PPy and activated carbon (AC) is able to maintain a long cycle life while achieving high power and energy densities.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qi Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Haochang Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shunzhe Zhang
- Beijing Institute of Aerospace Long March Vehicle, South Dahongmen Road #1, Beijing, 100076, P. R. China
| | - Kaifeng Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yujie Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hezhou Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chongyin Zhang
- Shanghai Aerospace Equipments Manufacturer Co., Ltd, Huaning Road #100, Shanghai, 200245, P. R. China
| | - Lu Shi
- Institute of Aerospace System Engineering Shanghai, Shanghai, 201108, P. R. China
| | - Hua Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Shanghai Aerospace Equipments Manufacturer Co., Ltd, Huaning Road #100, Shanghai, 200245, P. R. China
| |
Collapse
|
5
|
Zhou X, Chen B, Wang W, Liu L, Li X, Chen L, Li Y, Xia Y, Ci L. Core-shell heterostructured Ni(OH) 2@activation Zn-Co-Ni layered double hydroxides electrode for flexible all-solid-state coaxial fiber-shaped asymmetric supercapacitors. J Colloid Interface Sci 2024; 661:781-792. [PMID: 38325176 DOI: 10.1016/j.jcis.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
The increasing requirements for wearable and portable electronics are driving the interests of high performance fiber supercapacitor. Layered double hydroxide (LDH) is broadly used in electrode materials, owing to the adjustability of components and the unique lamellar structure. However, limited active sites and poor electrical conductivity hinder its applications. Herein, the core-shell heterostructured Ni(OH)2@activation Zn-Co-Ni layered double hydroxides (Ni(OH)2@A-ZnCoNi-LDH) electrode was fabricated by loading pseudocapacitance material on the A-ZnCoNi-LDH to improve the electrochemical performance. Significantly, benefits from the synergistic effect of the multi-metal ions and the core-shell heterostructure, the electrodes demonstrated a capacitance of 2405 mF·cm-2 at 1 mA·cm-2. Furthermore, Ni(OH)2@A-ZnCoNi-LDH was used as the core electrode and carbon nanotube (CNT) film coated with Fe2O3@reduced graphene oxide (rGO) was wrapped around the core electrode to assemble coaxial fiber asymmetric supercapacitor, which illustrated an ultrahigh energy density of 177.7 µWh·cm-2 at 0.75 mW·cm-2. In particular, after consecutive charging and discharging 7000 cycles, the capacitance retention of the device was 95 %, indicating the excellent cycling stability. Furthermore, the device with high flexibility can be woven into textiles in different shapes. The fabricated device has an excellent development prospect as an energy source in wearable electronic devices.
Collapse
Affiliation(s)
- Xiaoshuang Zhou
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Bing Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Wei Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Liang Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Xiankai Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Long Chen
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China.
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Yanzhi Xia
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Lijie Ci
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| |
Collapse
|
6
|
Pan L, Wang D, Wang J, Chu Y, Li X, Wang W, Mitsuzaki N, Jia S, Chen Z. Morphological control and performance engineering of Co-based materials for supercapacitors. Phys Chem Chem Phys 2024; 26:9096-9111. [PMID: 38456310 DOI: 10.1039/d3cp06038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
As one of the most promising energy storage devices, supercapacitors exhibit a higher power density than batteries. However, its low energy density usually requires high-performance electrode materials. Although the RuO2 material shows desirable properties, its high cost and toxicity significantly limit its application in supercapacitors. Recent developments demonstrated that Co-based materials have emerged as a promising alternative to RuO2 for supercapacitors due to their low cost, favorable redox reversibility and environmental friendliness. In this paper, the morphological control and performance engineering of Co-based materials are systematically reviewed. Firstly, the principle of supercapacitors is briefly introduced, and the characteristics and advantages of pseudocapacitors are emphasized. The special forms of cobalt-based materials are introduced, including 1D, 2D and 3D nanomaterials. After that, the ways to enhance the properties of cobalt-based materials are discussed, including adding conductive materials, constructing heterostructures and doping heteroatoms. Particularly, the influence of morphological control and modification methods on the electrochemical performances of materials is highlighted. Finally, the application prospect and development direction of Co-based materials are proposed.
Collapse
Affiliation(s)
- Lin Pan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Dan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Jibiao Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yuan Chu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiaosong Li
- Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, Jiangsu, 213032, China
| | | | - Shuyong Jia
- Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
7
|
Lin Z, Li L, Xi C, Li X, Feng S, Wang C, Wang H, Li T, Ma Y. Fabrication of the hollow dodecahedral NiCoZn layered double hydroxide for high-performance flexible asymmetric supercapacitor. J Colloid Interface Sci 2024; 657:91-101. [PMID: 38035423 DOI: 10.1016/j.jcis.2023.11.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Layered double hydroxides (LDHs) with unique layered structure have excellent theoretical capacitance. Nevertheless, the constrained availability of electrically active sites and cationic species curtails their feasibility for practical implementation within supercapacitors. Most of the reported materials are bimetallic hydroxides, and fewer studies are on trimetallic hydroxides. In here, the hollow dodecahedron NiCoZn-LDH is synthesized using CoZn metal-organic frameworks (CoZn-MOFs) as template. Its morphology and composition are studied in detail. Concurrently, the effect of the amount of third component on the resulting structure of NiCoZn-LDH is also researched. Benefiting from its favorable structural and compositional attributes to efficient transfer of ions and electrons, NiCoZn-LDH-200 demonstrates outstanding specific capacitance of 1003.3F g-1 at 0.5 A/g. Furthermore, flexible asymmetric supercapacitor utilizing NiCoZn-LDH-200 as the positive electrode and activated carbon (AC) as the negative electrode reveals favorable electrochemical performances, including a notable specific capacitance of 184.7F g-1 at 0.5 A/g, a power density of 368.21 W kg-1 at a high energy density of 65.66 Wh kg-1, an energy density of 31.78 Wh kg-1 at a high power density of 3985.97 W kg-1, a capacitance retention of 92 % after 8000 cycles at 5 A/g, and a good capacitance retention of 90 % after 500 cycles of bending. The template method presented herein can effectively solve the problem of easy accumulation and improve the electrochemical properties of the materials, which exhibits a broad research prospect.
Collapse
Affiliation(s)
- Zhongtai Lin
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Ling Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | | | - Xue Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Shixuan Feng
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Chuanjin Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Haowen Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
8
|
Wu L, Chen L, Chen H, Li G, Zhao W, Han L. Design and fabrication of MoO 42--intercalated LDH nanosheets coated on Co 9S 8 nanotubes with enhanced cycling stability for high-performance supercapacitors. Dalton Trans 2024; 53:4067-4079. [PMID: 38312038 DOI: 10.1039/d3dt04215d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Transition metal sulfides are promising electrode materials for supercapacitors due to their excellent electrochemical performance and high conductivity. Unfortunately, the low rate performance and poor cycling stability limited their progress towards commercial applications. Herein, the core-shell structure of MoO42--intercalated LDHs coated on Co9S8 nanotubes was rationally designed and prepared to improve their electrochemical performance and cycling stability by adjusting the composition of LDHs. Compared to NiMo-LDH@Co9S8 and CoMo-LDH@Co9S8, the optimized NiCoMo-LDH@Co9S8 electrode exhibits excellent areal specific capacitance (11 F cm-2 at 3 mA cm-2) and excellent cycling stability (94.4% after 5000 cycles). In addition, asymmetric supercapacitor devices were assembled with NiCoMo-LDH@Co9S8 and activated carbon (AC), which delivered a high energy density of 0.94 mWh cm-2, at a power density of 1.70 mW cm-2, and good cycling stability (89.4% after 5000 cycles). These results indicate that the introduction of MoO42- can enhance the synergistic effect of multiple metals and the synthesized NiCoMo-LDH@Co9S8 core-shell composite has great potential in the development of high-performance electrode materials for supercapacitors.
Collapse
Affiliation(s)
- Lei Wu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Linli Chen
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Hao Chen
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Guochang Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Wenna Zhao
- School of Biological and Chemical Engineering, Ningbotech University, Ningbo, Zhejiang 315100, China.
| | - Lei Han
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
9
|
Chen Q, Pan H, Chen Z, Jiang X, Li Y, Tian W, Liu H, Zhu S. Cobalt coordinated carbon quantum dots boosting the performance of NiCo-LDH for energy storage. J Colloid Interface Sci 2024; 655:110-119. [PMID: 37925967 DOI: 10.1016/j.jcis.2023.10.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Transition metal layered double hydroxides have extremely high specific capacitances but suffer from poor rate performance and cycling stability due to their low conductivity and structural stability. In this study, cobalt-coordinated carbon quantum dots (CoCQDs) were designed and synthesized to enhance the energy storage performance of nickel-cobalt layered double hydroxides (NiCo-LDH). Nickel and cobalt ions were co-electrodeposited with the CoCQDs to form a NiCo-LDH based composite electrode (denoted as CoC@LDH). Since the CoCQDs participated in the formation of the NiCo-LDH, the carbon quantum dots could be strongly bonded to the NiCo-LDH nanosheets through coordination interactions. Thus, the conductivity as well as the structure stability of the NiCo-LDH was effectively improved, which greatly boosted the cycle stability and rate performance of the NiCo-LDH. Several CoCQDs with different Co contents (nCoCQDs, n = 0.5, 1.0, 2.0) were fabricated and their effects on the performance of the resultant electrodes nCoC@LDH were investigated. The 1.0CoC@LDH electrode exhibited an impressive specific capacitance of 1867 F g-1 at 1 A-g-1, along with a significantly enhanced capacitance retention of 84.6 % after 6000 cycles at 5 A g-1 (benchmark 49.5 %). This ingenious design provides a new avenue for fabricating pseudo-capacitive materials with unprecedented high performance.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Pan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Zhixin Chen
- School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, NSW 2522, Australia
| | - Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yao Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wensheng Tian
- State Key Laboratory of Space Power-Sources, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
| | - Hao Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
10
|
Wu W, Yan Y, Yu Y, Wang X, Xu T, Li X. A self-sacrificing template strategy: In-situ construction of bimetallic MOF-derived self-supported CuCoSe nanosheet arrays for high-performance supercapacitors. J Colloid Interface Sci 2023; 650:358-368. [PMID: 37413870 DOI: 10.1016/j.jcis.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Transition metal selenides (TMSs) are viewed as a prospective high-capacity electrode material for asymmetric supercapacitors (ASCs). However, the inability to expose sufficient active sites due to the limitation of the area involved in the electrochemical reaction severely limits their inherent supercapacitive properties. Herein, a self-sacrificing template strategy is developed to prepare self-supported CuCoSe (CuCoSe@rGO-NF) nanosheet arrays by in situ construction of copper-cobalt bimetallic organic framework (CuCo-MOF) on rGO-modified nickel foam (rGO-NF) and rational design of Se2- exchange process. Nanosheet arrays with high specific surface area are considered to be ideal platforms for accelerating electrolyte penetration and exposing rich electrochemical active sites. As a result, the CuCoSe@rGO-NF electrode delivers a high specific capacitance of 1521.6 F/g at 1 A/g, good rate performance and an excellent capacitance retention of 99.5% after 6000 cycles. The assembled ASC device has a high energy density of 19.8 Wh kg-1 at 750 W kg-1 and an ideal capacitance retention of 86.2% after 6000 cycles. This proposed strategy offers a viable strategy for designing and constructing electrode materials with superior energy storage performance.
Collapse
Affiliation(s)
- Wenrui Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yue Yan
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yingsong Yu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xing Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tao Xu
- Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Xianfu Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| |
Collapse
|
11
|
Mohamed AM, Sayed DM, Allam NK. Optimized Fabrication of Bimetallic ZnCo Metal-Organic Framework at NiCo-Layered Double Hydroxides for Multiple Storage and Capability Synergy All-Solid-State Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16755-16767. [PMID: 36947435 DOI: 10.1021/acsami.3c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rational design and structural regulation of hybrid nanomaterials with superior electrochemical performance are crucial for developing sustainable energy storage platforms. Among these materials, NiCo-layered double hydroxides (NiCo-LDHs) demonstrate an exceptional charge storage capabilities owing to their tunable 2D lamellar structure, large interlayer spacing, and rich redox electrochemically active sites. However, NiCo-LDHs still suffer from sever agglomeration of their particles with limited charge transfer rates, resulting in an inadequate rate capability. In this study, bimetallic ZnCo-metal organic framework (MOF) tripods were grown on the surface of NiCo-LDH nanowires, which significantly reduced the self-agglomeration and stacking of the NiCo-LDH nanowire arrays, offering more accessible active sites for charge transfer and shortening the path for ion diffusion. The fabricated hybrid ZnCo-MOF@NiCo-LDH and its individual counterparts were tested as supercapacitor electrodes. The ZnCo-MOF@NiCo-LDH electrode demonstrated a remarkable specific capacitance of 1611 F g-1 at 2 A g-1 with an enhanced rate capability of 66% from 2 to 20 A g-1. Moreover, an asymmetric all solid-state supercapacitor device was constructed using ZnCo-MOF@NiCo-LDH and palm tree-derived activated carbon (P-AC) as positive and negative poles, respectively. The constructed device can store a high specific energy of 44.5 Wh Kg-1 and deliver a specific power of 876.7 W Kg-1 with outstanding Columbic efficiency over 10,000 charging/discharging cycles at 15 A g-1.
Collapse
Affiliation(s)
- Aya M Mohamed
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Doha M Sayed
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
12
|
Xie X, Song J, Fan H, Bai L, Liu S, Wang Y, Zheng W, Liu W. Flexible aqueous supercapacitors with excellent cycling performance and high-energy density based on mesocrystalline NiCo-LDHs. Phys Chem Chem Phys 2023; 25:9104-9114. [PMID: 36928112 DOI: 10.1039/d3cp00450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Flexible aqueous supercapacitors are promising candidates as safe power sources for wearable electronic devices (WEDs). However, the absence of advanced electrode materials with high structural stability has become the most critical factor hindering the development, which is closely related to the poor interface combination between the active substances and flexible collectors. Herein, a unique rigid layered double hydroxide (LDH) nanorod array with the mesocrystalline feature is created using the NiO-Ni layer as the inducer by the electrodeposition strategy. Differing from the traditional NiCo-LDH nanosheets directly grown on a carbon cloth, an elaborately designed NiO-Ni buffer can simultaneously and effectively improve the bidirectional combination with active substances and collectors, also the mesocrystalline LDH showed enhanced intrinsic stability through the reinforcing effect of grain boundaries. Benefiting from these, the assembled supercapacitor exhibited pre-eminent cycle stability (increased from 64% of the initial capacity after 10 000 cycles to no significant attenuation after 50 000 cycles) and ultrahigh energy density. When it was used as a flexible device, a remarkable energy density of 70.4 W h kg-1 could be harvested and processed with high flexibility in the bending state and good temperature adaptability. This study provides an excellent design strategy for the development of next-generation flexible supercapacitors with the goal of better comprehensive performances.
Collapse
Affiliation(s)
- Xiaohui Xie
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Jinyue Song
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Hongguang Fan
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Lichong Bai
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Shuang Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yanpeng Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Wansu Zheng
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Wei Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
13
|
Yue X, Dong Y, Cao H, Wei X, Zheng Q, Sun W, Lin D. Effect of electronic structure modulation and layer spacing change of NiAl layered double hydroxide nanoflowers caused by cobalt doping on supercapacitor performance. J Colloid Interface Sci 2023; 630:973-983. [DOI: 10.1016/j.jcis.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
|
14
|
Wang S, Li Y, Xu Q, Fu Q, Guo X, Zheng Y, Zhang W, Cao Z, Li R, Ren J. Facile preparation of graphene@polyaniline nanofiber network/oxidized carbon cloth composites for high-performance flexible solid-state supercapacitors. NANOSCALE 2022; 14:15908-15917. [PMID: 36268823 DOI: 10.1039/d2nr04723c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The complicated preparation process and low energy density of polyaniline (PANI)-based electrodes limit their wide applications in flexible energy storage devices. In this work, a reduced graphene (rGO)-wrapped polyaniline nanofiber network (PANI-NFN)/oxidized carbon cloth (OCC) (rGO@PANI-NFN/OCC) composite was prepared by a facile impregnation method using reactive templates of MnO2 on the surface of OCC. The as-prepared rGO@PANI-NFN/OCC composite exhibited a high area specific capacitance of 4438 mF cm-2 and maintained an initial capacitance of 88.2% after 3000 GCD cycles. It can be used as an independent electrode to construct flexible solid-state supercapacitors (FSSCs), and the FSSCs based on rGO@PANI-NFN/OCC also exhibit a high energy density of 117.9 μW h cm-2 and 88.39% retention after 500 bending cycles, which shows a great prospect for flexible energy storage device applications. The enhanced performance of rGO@PANI-NFN/OCC composites is mainly attributed to the synergistic effect of PANI-NFN structures with a large specific surface area and a rGO wrap layer to reduce the swelling and shrinking of PANI.
Collapse
Affiliation(s)
- Shaohua Wang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Yuying Li
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Qiang Xu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Qiuping Fu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Xinli Guo
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Yanmei Zheng
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Weijie Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Zhen Cao
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Ruiting Li
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Jingxuan Ren
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
15
|
Zhao X, Li H, Zhang M, Pan W, Luo Z, Sun X. Hierarchical Nanocages Assembled by NiCo-Layered Double Hydroxide Nanosheets for a High-Performance Hybrid Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34781-34792. [PMID: 35867900 DOI: 10.1021/acsami.2c08903] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Layered double hydroxides (LDHs) have attracted broad attention as cathode materials for hybrid supercapacitors (HSCs) because of their ultrahigh theoretical specific capacitance, high compositional flexibility, and adjustable interlayer spacing. However, as reported, specific capacitance of LDHs is still far below the theoretical value, inspiring countless efforts to these ongoing challenges. Herein, a hierarchical nanocage structure assembled by NiCo-LDH nanosheet arrays was rationally designed and fabricated via a facile solvothermal method assisted by the ZIF-67 template. The transformation from the ZIF-67 template to this hollow structure is achieved by a synergistic effect involving the Kirkendall effect and the Ostwald ripening process. The enlarged specific surface area co-occurred with broadened interlayer spacing of LDH nanosheets by finely increasing the Ni concentration, leading to synchronous improvement of electron/ion transfer kinetics. The optimized NiCo-LDH-210 electrode displays a maximum specific capacitance of 2203.6 F g-1 at 2 A g-1, excellent rate capability, and satisfactory cycling stability because of the highly exposed active sites and shortened ion transport paths provided by vertically aligned LDH nanosheets together with the cavity. Furthermore, the assembled HSC device achieves a superior energy density of 57.3 Wh kg-1 with prominent cycling stability. Impressively, the design concept of complex construction derived from metal-organic frameworks (MOF) derivatives shows tremendous potential for use in energy storage systems.
Collapse
Affiliation(s)
- Xiang Zhao
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Hui Li
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Mu Zhang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- Foshan Graduate School of Northeastern University, Foshan 528311, PR China
| | - Wei Pan
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Xudong Sun
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- Foshan Graduate School of Northeastern University, Foshan 528311, PR China
| |
Collapse
|