1
|
Gentili V, Beltrami S, Cuffaro D, Cianci G, Maini G, Rizzo R, Macchia M, Rossello A, Bortolotti D, Nuti E. JG26 attenuates ADAM17 metalloproteinase-mediated ACE2 receptor processing and SARS-CoV-2 infection in vitro. Pharmacol Rep 2025; 77:260-273. [PMID: 39292373 PMCID: PMC11743353 DOI: 10.1007/s43440-024-00650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND ADAM17 is a metalloprotease implicated in the proteolysis of angiotensin-converting enzyme 2 (ACE2), known to play a critical role in the entry and spread of SARS-CoV-2. In this context, ADAM17 results as a potential novel target for controlling SARS-CoV-2 infection. METHODS In this study, we investigated the impact on ACE2 surface expression and the antiviral efficacy against SARS-CoV-2 infection of the selective ADAM17 inhibitor JG26 and its dimeric (compound 1) and glycoconjugate (compound 2) derivatives using Calu-3 human lung cells. RESULTS None of the compounds exhibited cytotoxic effects on Calu-3 cells up to a concentration of 25 µM. Treatment with JG26 resulted in partial inhibition of both ACE2 receptor shedding and SARS-CoV-2 infection, followed by compound 1. CONCLUSION JG26, an ADAM17 inhibitor, demonstrated promising antiviral activity against SARS-CoV-2 infection, likely attributed to reduced sACE2 availability, thus limiting viral dissemination.
Collapse
Affiliation(s)
- Valentina Gentili
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
| | - Silvia Beltrami
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, 56126, Italy
| | - Giorgia Cianci
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
| | - Gloria Maini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
- Clinical Research Center, LTTA, University of Ferrara, Ferrara, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, 56126, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, 56126, Italy
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy.
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, 56126, Italy.
| |
Collapse
|
2
|
Gentili V, Schiuma G, Dilliraj LN, Beltrami S, Rizzo S, Lara D, Giovannini PP, Marti M, Bortolotti D, Trapella C, Narducci M, Rizzo R. DAG-MAG-ΒHB: A Novel Ketone Diester Modulates NLRP3 Inflammasome Activation in Microglial Cells in Response to Beta-Amyloid and Low Glucose AD-like Conditions. Nutrients 2024; 17:149. [PMID: 39796582 PMCID: PMC11722608 DOI: 10.3390/nu17010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND A neuroinflammatory disease such as Alzheimer's disease, presents a significant challenge in neurotherapeutics, particularly due to the complex etiology and allostatic factors, referred to as CNS stressors, that accelerate the development and progression of the disease. These CNS stressors include cerebral hypo-glucose metabolism, hyperinsulinemia, mitochondrial dysfunction, oxidative stress, impairment of neuronal autophagy, hypoxic insults and neuroinflammation. This study aims to explore the efficacy and safety of DAG-MAG-ΒHB, a novel ketone diester, in mitigating these risk factors by sustaining therapeutic ketosis, independent of conventional metabolic pathways. METHODS We evaluated the intestinal absorption of DAG-MAG-ΒHB and the metabolic impact in human microglial cells. Utilizing the HMC3 human microglia cell line, we examined the compound's effect on cellular viability, Acetyl-CoA and ATP levels, and key metabolic enzymes under hypoglycemia. Additionally, we assessed the impact of DAG-AG-ΒHB on inflammasome activation, mitochondrial activity, ROS levels, inflammation and phagocytic rates. RESULTS DAG-MAG-ΒHB showed a high rate of intestinal absorption and no cytotoxic effect. In vitro, DAG-MAG-ΒHB enhanced cell viability, preserved morphological integrity, and maintained elevated Acetyl-CoA and ATP levels under hypoglycemic conditions. DAG-MAG-ΒHB increased the activity of BDH1 and SCOT, indicating ATP production via a ketolytic pathway. DAG-MAG-ΒHB showed remarkable resilience against low glucose condition by inhibiting NLRP3 inflammasome activation. CONCLUSIONS In summary, DAG-MAG-ΒHB emerges as a promising treatment for neuroinflammatory conditions. It enhances cellular health under varying metabolic states and exhibits neuroprotective properties against low glucose conditions. These attributes indicate its potential as an effective component in managing neuroinflammatory diseases, addressing their complex progression.
Collapse
Affiliation(s)
- Valentina Gentili
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.G.); (G.S.); (S.B.); (S.R.); (D.L.); (D.B.); (M.N.)
| | - Giovanna Schiuma
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.G.); (G.S.); (S.B.); (S.R.); (D.L.); (D.B.); (M.N.)
| | - Latha Nagamani Dilliraj
- Department of Chemical, Pharmaceutical, Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.N.D.); (P.P.G.); (C.T.)
| | - Silvia Beltrami
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.G.); (G.S.); (S.B.); (S.R.); (D.L.); (D.B.); (M.N.)
| | - Sabrina Rizzo
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.G.); (G.S.); (S.B.); (S.R.); (D.L.); (D.B.); (M.N.)
| | - Djidjell Lara
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.G.); (G.S.); (S.B.); (S.R.); (D.L.); (D.B.); (M.N.)
| | - Pier Paolo Giovannini
- Department of Chemical, Pharmaceutical, Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.N.D.); (P.P.G.); (C.T.)
| | - Matteo Marti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Daria Bortolotti
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.G.); (G.S.); (S.B.); (S.R.); (D.L.); (D.B.); (M.N.)
| | - Claudio Trapella
- Department of Chemical, Pharmaceutical, Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.N.D.); (P.P.G.); (C.T.)
| | - Marco Narducci
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.G.); (G.S.); (S.B.); (S.R.); (D.L.); (D.B.); (M.N.)
- Management Department, Temple University, Japan Campus, Tokyo 154-0004, Japan
| | - Roberta Rizzo
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.G.); (G.S.); (S.B.); (S.R.); (D.L.); (D.B.); (M.N.)
| |
Collapse
|
3
|
Barabanova AI, Karamov EV, Larichev VF, Kornilaeva GV, Fedyakina IT, Turgiev AS, Naumkin AV, Lokshin BV, Shibaev AV, Potemkin II, Philippova OE. Virucidal Coatings Active Against SARS-CoV-2. Molecules 2024; 29:4961. [PMID: 39459329 PMCID: PMC11510018 DOI: 10.3390/molecules29204961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Three types of coatings (contact-based, release-based, and combined coatings with both contact-based and release-based actions) were prepared and tested for the ability to inactivate SARS-CoV-2. In these coatings, quaternary ammonium surfactants were used as active agents since quaternary ammonium compounds are some of the most commonly used disinfectants. To provide contact-based action, the glass and silicon surfaces with covalently attached quaternary ammonium cationic surfactant were prepared using a dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride modifier. Surface modification was confirmed by attenuated total reflection infrared spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy, and contact angle measurements. The grafting density of the modifier was estimated by XPS and elemental analysis. To provide release-based action, the widely used quaternary ammonium cationic disinfectant, benzalkonium chloride (BAC), and a newly synthesized cationic gemini surfactant, C18-4-C18, were bound non-covalently to the surface either through hydrophobic or electrostatic interactions. Virus titration revealed that the surfaces with combined contact-based and release-based action and the surfaces with only release-based action completely inactivate SARS-CoV-2. Coatings containing only covalently bound disinfectant are much less effective; they only provide up to 1.25 log10 reduction in the virus titer, probably because of the low disinfectant content in the surface monolayer. No pronounced differences in the activity between the flat and structured surfaces were observed for any of the coatings under study. Comparative studies of free and electrostatically bound disinfectants show that binding to the surface of nanoparticles diminishes the activity. These data indicate that SARS-CoV-2 is more sensitive to the free disinfectants.
Collapse
Affiliation(s)
- Anna I. Barabanova
- Institute of Organoelement Compounds, 119991 Moscow, Russia; (A.V.N.); (B.V.L.)
| | - Eduard V. Karamov
- Gamaleya National Research Center for Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia; (E.V.K.); (V.F.L.); (G.V.K.); (I.T.F.); (A.S.T.)
| | - Viktor F. Larichev
- Gamaleya National Research Center for Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia; (E.V.K.); (V.F.L.); (G.V.K.); (I.T.F.); (A.S.T.)
| | - Galina V. Kornilaeva
- Gamaleya National Research Center for Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia; (E.V.K.); (V.F.L.); (G.V.K.); (I.T.F.); (A.S.T.)
| | - Irina T. Fedyakina
- Gamaleya National Research Center for Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia; (E.V.K.); (V.F.L.); (G.V.K.); (I.T.F.); (A.S.T.)
| | - Ali S. Turgiev
- Gamaleya National Research Center for Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia; (E.V.K.); (V.F.L.); (G.V.K.); (I.T.F.); (A.S.T.)
| | | | - Boris V. Lokshin
- Institute of Organoelement Compounds, 119991 Moscow, Russia; (A.V.N.); (B.V.L.)
| | - Andrey V. Shibaev
- Physics Department, Moscow State University, 119991 Moscow, Russia; (A.V.S.); (O.E.P.)
- Chemistry Department, Karaganda E.A. Buketov University, Karaganda 100028, Kazakhstan
| | - Igor I. Potemkin
- Physics Department, Moscow State University, 119991 Moscow, Russia; (A.V.S.); (O.E.P.)
| | - Olga E. Philippova
- Physics Department, Moscow State University, 119991 Moscow, Russia; (A.V.S.); (O.E.P.)
| |
Collapse
|
4
|
Hilton J, Nanao Y, Flokstra M, Askari M, Smith TK, Di Falco A, King PDC, Wahl P, Adamson CS. The role of ion dissolution in metal and metal oxide surface inactivation of SARS-CoV-2. Appl Environ Microbiol 2024; 90:e0155323. [PMID: 38259079 PMCID: PMC10880620 DOI: 10.1128/aem.01553-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
Abstract
Anti-viral surface coatings are under development to prevent viral fomite transmission from high-traffic touch surfaces in public spaces. Copper's anti-viral properties have been widely documented, but the anti-viral mechanism of copper surfaces is not fully understood. We screened a series of metal and metal oxide surfaces for anti-viral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19). Copper and copper oxide surfaces exhibited superior anti-SARS-CoV-2 activity; however, the level of anti-viral activity was dependent on the composition of the carrier solution used to deliver virus inoculum. We demonstrate that copper ions released into solution from test surfaces can mediate virus inactivation, indicating a copper ion dissolution-dependent anti-viral mechanism. The level of anti-viral activity is, however, not dependent on the amount of copper ions released into solution per se. Instead, our findings suggest that degree of virus inactivation is dependent on copper ion complexation with other biomolecules (e.g., proteins/metabolites) in the virus carrier solution that compete with viral components. Although using tissue culture-derived virus inoculum is experimentally convenient to evaluate the anti-viral activity of copper-derived test surfaces, we propose that the high organic content of tissue culture medium reduces the availability of "uncomplexed" copper ions to interact with the virus, negatively affecting virus inactivation and hence surface anti-viral performance. We propose that laboratory anti-viral surface testing should include virus delivered in a physiologically relevant carrier solution (saliva or nasal secretions when testing respiratory viruses) to accurately predict real-life surface anti-viral performance when deployed in public spaces.IMPORTANCEThe purpose of evaluating the anti-viral activity of test surfaces in the laboratory is to identify surfaces that will perform efficiently in preventing fomite transmission when deployed on high-traffic touch surfaces in public spaces. The conventional method in laboratory testing is to use tissue culture-derived virus inoculum; however, this study demonstrates that anti-viral performance of test copper-containing surfaces is dependent on the composition of the carrier solution in which the virus inoculum is delivered to test surfaces. Therefore, we recommend that laboratory surface testing should include virus delivered in a physiologically relevant carrier solution to accurately predict real-life test surface performance in public spaces. Understanding the mechanism of virus inactivation is key to future rational design of improved anti-viral surfaces. Here, we demonstrate that release of copper ions from copper surfaces into small liquid droplets containing SARS-CoV-2 is a mechanism by which the virus that causes COVID-19 can be inactivated.
Collapse
Affiliation(s)
- Jane Hilton
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Yoshiko Nanao
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Machiel Flokstra
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Meisam Askari
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Terry K. Smith
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Andrea Di Falco
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Phil D. C. King
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Peter Wahl
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Catherine S. Adamson
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| |
Collapse
|
5
|
Marchesi E, Gentili V, Bortolotti D, Preti L, Marchetti P, Cristofori V, Fantinati A, Rizzo R, Trapella C, Perrone D, Navacchia ML. Dihydroartemisinin-Ursodeoxycholic Bile Acid Hybrids in the Fight against SARS-CoV-2. ACS OMEGA 2023; 8:45078-45087. [PMID: 38046338 PMCID: PMC10688034 DOI: 10.1021/acsomega.3c07034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 12/05/2023]
Abstract
Here, we propose the molecular hybridization of dihydroartemisinin (DHA) and ursodeoxycholic bile acid (UDCA), approved drugs, for the preparation of antiviral agents against SARS-CoV-2. DHA and UDCA were selected on the basis of their recently demonstrated in vitro activity against SARS-CoV-2. A selection of DHA-UDCA-based hybrids obtained by varying the nature of the linkage and the bile acid conjugation point as well as unconjugated DHA and UDCA were tested in vitro for cytotoxicity and anti-SARS-CoV-2 activity on Vero E6 and Calu-3 human lung cells. The hybrid DHA-t-UDCMe, obtained by conjugation via click chemistry on a gram scale, was identified as a potential candidate for SARS-CoV-2 infection treatment due to significant reduction of viral replication, possibly involving ACE2 downregulation, no cytotoxicity, and chemical stability.
Collapse
Affiliation(s)
- Elena Marchesi
- Department
of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Valentina Gentili
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Daria Bortolotti
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Lorenzo Preti
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Marchetti
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Virginia Cristofori
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Anna Fantinati
- Department
of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Roberta Rizzo
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Claudio Trapella
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Daniela Perrone
- Department
of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Luisa Navacchia
- Institute
for Organic Synthesis and Photoreactivity (ISOF), National Research
Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| |
Collapse
|
6
|
Lodi G, Gentili V, Casciano F, Romani A, Zauli G, Secchiero P, Zauli E, Simioni C, Beltrami S, Fernandez M, Rizzo R, Voltan R. Cell cycle block by p53 activation reduces SARS-CoV-2 release in infected alveolar basal epithelial A549-hACE2 cells. Front Pharmacol 2022; 13:1018761. [PMID: 36582523 PMCID: PMC9792496 DOI: 10.3389/fphar.2022.1018761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV viruses have been shown to downregulate cellular events that control antiviral defenses. They adopt several strategies to silence p53, key molecule for cell homeostasis and immune control, indicating that p53 has a central role in controlling their proliferation in the host. Specific actions are the stabilization of its inhibitor, MDM2, and the interference with its transcriptional activity. The aim of our work was to evaluate a new approach against SARS-CoV-2 by using MDM2 inhibitors to raise p53 levels and activate p53-dependent pathways, therefore leading to cell cycle inhibition. Experimental setting was performed in the alveolar basal epithelial cell line A549-hACE2, expressing high level of ACE2 receptor, to allow virus entry, as well as p53 wild-type. Cells were treated with several concentrations of Nutlin-3 or RG-7112, two known MDM2 inhibitors, for the instauration of a cell cycle block steady-state condition before and during SARS-CoV-2 infection, and for the evaluation of p53 activation and impact on virus release and related innate immune events. The results indicated an efficient cell cycle block with inhibition of the virion release and a significant inhibition of IL-6, NF-kB and IFN-λ expression. These data suggest that p53 is an efficient target for new therapies against the virus and that MDM2 inhibitors deserve to be further investigated in this field.
Collapse
Affiliation(s)
- Giada Lodi
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Valentina Gentili
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy,Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, Ferrara, Italy
| | - Arianna Romani
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Silvia Beltrami
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mercedes Fernandez
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy,*Correspondence: Roberta Rizzo, ; Rebecca Voltan,
| | - Rebecca Voltan
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy,*Correspondence: Roberta Rizzo, ; Rebecca Voltan,
| |
Collapse
|
7
|
Dhabarde N, Khaiboullina S, Uppal T, Adhikari K, Verma SC, Subramanian VR. Inactivation of SARS-CoV-2 and Other Human Coronaviruses Aided by Photocatalytic One-Dimensional Titania Nanotube Films as a Self-Disinfecting Surface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50463-50474. [PMID: 36335476 DOI: 10.1021/acsami.2c03226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
SARS-CoV-2 and its variants that continue to emerge have necessitated the implementation of effective disinfection strategies. Developing self-disinfecting surfaces can be a potential route for reducing fomite transmissions of infectious viruses. We show the effectiveness of TiO2 nanotubes (T_NTs) on photocatalytic inactivation of human coronavirus, HCoV-OC43, as well as SARS-CoV-2. T_NTs were synthesized by the anodization process, and their impact on photocatalytic inactivation was evaluated by the detection of residual viral genome copies (quantitative real-time quantitative reverse transcription polymerase chain reaction) and infectious viruses (infectivity assays). T_NTs with different structural morphologies, wall thicknesses, diameters, and lengths were prepared by varying the time and applied potential during anodization. The virucidal efficacy was tested under different UV-C exposure times to understand the photocatalytic reaction's kinetics. We showed that the T_NT presence boosts the inactivation process and demonstrated complete inactivation of SARS-CoV-2 as well as HCoV-OC43 within 30 s of UV-C illumination. The remarkable cyclic stability of these T_NTs was revealed through a reusability experiment. The spectroscopic and electrochemical analyses have been reported to correlate and quantify the effects of the physical features of T_NT with photoactivity. We anticipate that the proposed one-dimensional T_NT will be applicable for studying the surface inactivation of other coronaviruses including SARS-CoV-2 variants due to similarities in their genomic structure.
Collapse
Affiliation(s)
- Nikhil Dhabarde
- Chemical and Materials Engineering Department, University of Nevada, LME 309, MS 388, Reno, Nevada 89557, United States
| | - Svetlana Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, Nevada 89557, United States
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, Nevada 89557, United States
| | - Kabita Adhikari
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, Nevada 89557, United States
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, Nevada 89557, United States
| | - Vaidyanathan Ravi Subramanian
- Chemical and Materials Engineering Department, University of Nevada, LME 309, MS 388, Reno, Nevada 89557, United States
| |
Collapse
|
8
|
Behzadinasab S, Hosseini M, Williams MD, Ivester HM, Allen IC, Falkinham JO, Ducker WA. Antimicrobial Activity of Cuprous Oxide and Cupric Oxide-Coated Surfaces. J Hosp Infect 2022; 129:58-64. [DOI: 10.1016/j.jhin.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
|
9
|
Molchanov VS, Shibaev AV, Karamov EV, Larichev VF, Kornilaeva GV, Fedyakina IT, Turgiev AS, Philippova OE, Khokhlov AR. Antiseptic Polymer-Surfactant Complexes with Long-Lasting Activity against SARS-CoV-2. Polymers (Basel) 2022; 14:2444. [PMID: 35746017 PMCID: PMC9228194 DOI: 10.3390/polym14122444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Antiseptic polymer gel-surfactant complexes were prepared by incorporating the low-molecular-weight cationic disinfectant cetylpyridinium chloride into the oppositely charged, slightly cross-linked polymer matrices. Three types of polymers were used: copolymers of acrylamide and sodium 2-acrylamido-2-methylpropane sulfonate; copolymers of acrylamide and sodium methacrylate; copolymers of vinylpyrrolidone and sodium methacrylate. It was shown that the rate of the release of the cationic disinfectant from the oppositely charged polymer gels could be tuned in a fairly broad range by varying the concentration of the disinfectant, the degree of swelling, and degree of cross-linking of the gel and the content/type of anionic repeat units in the polymer matrix. Polymer-surfactant complexes were demonstrated to reduce SARS-CoV-2 titer by seven orders of magnitude in as little as 5 s. The complexes retained strong virucidal activity against SARS-CoV-2 for at least one week.
Collapse
Affiliation(s)
- Vyacheslav S. Molchanov
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.M.); (A.V.S.); (A.R.K.)
| | - Andrey V. Shibaev
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.M.); (A.V.S.); (A.R.K.)
| | - Eduard V. Karamov
- Gamaleya National Research Center for Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia; (E.V.K.); (V.F.L.); (G.V.K.); (I.T.F.); (A.S.T.)
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases of the Russian Ministry of Health, 127473 Moscow, Russia
| | - Viktor F. Larichev
- Gamaleya National Research Center for Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia; (E.V.K.); (V.F.L.); (G.V.K.); (I.T.F.); (A.S.T.)
| | - Galina V. Kornilaeva
- Gamaleya National Research Center for Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia; (E.V.K.); (V.F.L.); (G.V.K.); (I.T.F.); (A.S.T.)
| | - Irina T. Fedyakina
- Gamaleya National Research Center for Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia; (E.V.K.); (V.F.L.); (G.V.K.); (I.T.F.); (A.S.T.)
| | - Ali S. Turgiev
- Gamaleya National Research Center for Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia; (E.V.K.); (V.F.L.); (G.V.K.); (I.T.F.); (A.S.T.)
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases of the Russian Ministry of Health, 127473 Moscow, Russia
| | - Olga E. Philippova
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.M.); (A.V.S.); (A.R.K.)
| | - Alexei R. Khokhlov
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.M.); (A.V.S.); (A.R.K.)
| |
Collapse
|
10
|
Antiseptic Materials on the Base of Polymer Interpenetrating Networks Microgels and Benzalkonium Chloride. Int J Mol Sci 2022; 23:ijms23084394. [PMID: 35457209 PMCID: PMC9027481 DOI: 10.3390/ijms23084394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
Polymer microgels, including those based on interpenetrating networks (IPNs), are currently vastly studied, and their practical applications are a matter of thriving research. In this work, we show the perspective for the use of polyelectrolyte IPN microgels either as scavengers or carriers of antiseptic substances. Here, we report that poly-N-isopropylacrylamide/polyacrylic acid IPN microgels can efficiently absorb the common bactericidal and virucidal compound benzalkonium chloride. The particles can form a stable aqueous colloidal suspension or be used as building blocks for soft free-standing films. Both materials showed antiseptic efficacy on the examples of Bacillus subtilis and S. aureus, which was approximately equal to the commercial antibiotic. Such polymer biocides can be used as liquid disinfectants, stable surface coatings, or parts of biomedical devices and can enhance the versatility of the possible practical applications of polymer microgels.
Collapse
|