1
|
Wang J, Zhou W, Liu Y, He G, Yang Y. Biomimetic Compound Eyes with Gradient Ommatidium Arrays. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44503-44512. [PMID: 37675845 DOI: 10.1021/acsami.3c08063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Compound eyes are high-performing natural optical perception systems with compact configurations, generating extensive research interest. Existing compound eye systems are often combinations of simple uniform microlens arrays; there are still challenges in making more ommatidia on the compound eye surface to focus to the same plane. Here, a biomimetic gradient compound eye is presented by artificially mimicking dragonflies. The multiple replication process efficiently endows compound eyes with the gradient characteristics of dragonfly compound eyes. Experimental results show that the manufactured compound eye allows multifocus imaging by virtue of the gradient ommatidium array arranged closely in a honeycomb pattern while ensuring excellent optical properties and compact configurations. Thousands of ommatidia showing a gradient trend at the millimeter scale while remaining relatively uniform at the micron scale have gradient focal lengths ranging from 260 to 450 μm. This gradient compound eye allows more ommatidia to focus on the same plane than traditional uniform compound eyes, which have experimentally been shown to capture more than 1100 in-plane clear images simultaneously, promising potential applications in micro-optical devices, optical imaging, and biochemical sensing.
Collapse
Affiliation(s)
- Jian Wang
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Wenna Zhou
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yantong Liu
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Guoqing He
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yi Yang
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|
2
|
Wu M, Jiang L, Li X, Xiang Z, Yi P, Liu Y, Zhang L, Li X, Wang Z, Zhang X. Microheater-Integrated Microlens Array for Robust Rapid Fog Removal. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41092-41100. [PMID: 37599436 DOI: 10.1021/acsami.3c07262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
In extreme environments, fog formation on a microlens array (MLA) surface results in a device failure. One reliable solution for fog removal is to heat the surface using a microheater. However, due to the surface interference, the combination of these two microdevices remains elusive. In this study, we introduce lift-off and electroless plating into femtosecond laser processing to fabricate a microheater integrated MLA (μH-MLA) on the same substrate with high light transmittance, durability, and fog removal efficiency. Laser-induced micro-nano grooves enable the microheater to be tightly coupled with the MLA and have high heating performance, thus maintaining a stable performance for over 24 h during continuous operation as well as under long time ultrasonic vibration and mechanical friction. With a rapid response time (τ0.5) of 17 s and a high working temperature of 188 °C, the μH-MLA removed fog that covers the entire face within 14 s. Finally, we prove the use of this fabrication method in large areas and curved surface environments. This study provides a flexible, stable, and economical method to integrate micro-optical and microelectrical devices.
Collapse
Affiliation(s)
- Mengnan Wu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lan Jiang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaowei Li
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhikun Xiang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Peng Yi
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yang Liu
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Leyi Zhang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xibiao Li
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhi Wang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiangyu Zhang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Fang C, Xu W, Zhu L, Zhuang Y, Zhang D. Superhydrophobic and easy-to-clean full-packing nanopatterned microlens array with high-quality imaging. OPTICS EXPRESS 2023; 31:13601-13612. [PMID: 37157244 DOI: 10.1364/oe.485260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The high-quality imaging and easy cleaning property of microlens array (MLA) are two very important factors for its outdoor work. Herein, a superhydrophobic and easy-to-clean full-packing nanopatterned MLA with high-quality imaging is prepared by thermal reflow together with sputter deposition. Scanning electronic microscopy (SEM) images demonstrate that the sputter deposition method can improve 84% packing density of MLA prepared by thermal reflow to 100% and add nanopattern on the surface of microlens. The prepared full-packing nanopatterned MLA (npMLA) possess clear imaging with a significant increase of signal-to-noise ratio and higher transparency compared with the MLA prepared by thermal reflow. Besides for excellent optical properties, the full-packing surface displays a superhydrophobic property with a contact angle of 151.3°. Further, the full-packing contaminated by chalk dust become easier to be cleaned by nitrogen blowing and deionized water. As a result, the prepared full-packing is considered to be potential for various applications in the outdoor.
Collapse
|