1
|
Zhang Y, Liu C, Li Z, Liu Y, Zheng H, Lin Q, Yu L, Boo YJ, Chan BQY, Loh XJ, Wu YL, Song Q, Li P, Chan SY. Microneedle-Mediated Synergistic Photothermal and Chemotherapy for Targeted Melanoma Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14952-14967. [PMID: 40029948 DOI: 10.1021/acsami.4c20844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Melanoma, a malignant skin tumor originating from melanocytes, is typically treated with surgery in its early stages. However, chemotherapy becomes the primary treatment as the disease progresses to intermediate and advanced stages. The parenteral administration of chemotherapy can cause anxiety, discomfort, and infection risks, especially in immunocompromised cancer patients. Additionally, the circulating drugs can lead to systemic toxicity and side effects. Microneedles (MNs) provide a safer, less invasive alternative to address these issues. Herein, we demonstrated the effectiveness of integrating antimicrobial MNs with combined photothermal and chemotherapy treatment modalities against melanoma, presenting a promising approach to improving cancer treatment outcomes while minimizing associated risks. By leveraging the unique properties of chitosan (CS) and the versatility of poly(vinyl alcohol) (PVA), we fabricated physically cross-linked MNs with inherent antibacterial and antiviral properties. The physical cross-linked network not only accommodated polypyrrole nanoparticles (PPy NPs) for photothermal capabilities but also facilitated drug [doxorubicin hydrochloride (DOX)] loading and release over an extended period. Interestingly, in vitro and in vivo studies revealed that the MNs possess intrinsic antimelanoma properties. Compared to monotherapies, the combination of photothermal therapy and chemotherapy exhibited enhanced effectiveness against melanoma. This research paves the way for safer, more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Yanni Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chuyi Liu
- Xiamen University, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
| | - Zhiguo Li
- Xiamen University, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
| | - Yingjia Liu
- Xiamen University, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
| | - Hua Zheng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yun-Long Wu
- Xiamen University, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Siew Yin Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
2
|
Jia J, Li Z, Sang Z, Liu X, Peng W, Chen R, Jiang Q, Li X, Ren Z, Hao W, Yin L, Liu J, Hou F, Liang J. High-throughput Design of Single-atom Catalysts with Nonplanar and Triple Pyrrole-N Coordination for Highly Efficient H 2O 2 Electrosynthesis. Angew Chem Int Ed Engl 2025; 64:e202421864. [PMID: 39740117 DOI: 10.1002/anie.202421864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/02/2025]
Abstract
Single-atom catalysts (SACs) with nonplanar configurations possess unique capabilities for tailoring the oxygen reduction reaction (ORR) catalytic performance compared with the ones with planar configurations, owing to the additional orbital rearrangement arising from the asymmetric coordination atoms. However, the systematic investigation of these nonplanar SACs has long been hindered by the difficulty in screening feasible nonplanar configurations and precisely controlling the coordination structures. Herein, we demonstrate a combined high-throughput screening and experimental verification of nonplanar SACs (ppy-MN3) with metal atoms triple-coordinated by pyrrole-N, for highly active and selective 2e- ORR electrocatalysis. With the additional p-orbital rearrangement of N-ligands for ppy-MN3 during catalysis, a new descriptor on the energy difference between d-band center of metal sites and p-band centers of N-ligands (Δϵd-p) is proposed to accurately identify the relationship between their catalytic activities and electronic structures, on top of the conventional d-band center theory. Consequently, ppy-ZnN3 is identified with excellent 2e- ORR activity (η=0.08 eV) and selectivity, as well as a low 2e- ORR kinetic barrier under alkaline condition owing to a strong hydrogen bonding between OOH* intermediate and interfacial water, which is then experimentally verified by its high electrocatalytic H2O2 yield (43 mol g-1 h-1) and selectivity (92 %) under alkaline condition. This study thus presents a proof-of-concept demonstration of the performance-oriented and precise coordination design of nonplanar SACs for efficient H2O2 electrosynthesis, and, more importantly, provides an essential complement to the d-band theory for more accurately predicting the catalytic activities of catalysts with nonplanar configurations for series potential electrochemical processes.
Collapse
Affiliation(s)
- Jingjing Jia
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| | - Zhenxin Li
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| | - Zhiyuan Sang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xiaoqing Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| | - Wei Peng
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| | - Rui Chen
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| | - Qiao Jiang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| | - Xia Li
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| | - Zhizhen Ren
- School of Physics, Beihang University, Beijing, 100191, China
- The Analysis & Testing Center, Beihang University, Beijing, 100191, China
| | - Weichang Hao
- School of Physics, Beihang University, Beijing, 100191, China
- The Analysis & Testing Center, Beihang University, Beijing, 100191, China
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, China
| | - Jiachen Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| | - Feng Hou
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| | - Ji Liang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| |
Collapse
|
3
|
Yu X, Ji Y, Shen X, Le X. Progress in Advanced Infrared Optoelectronic Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:845. [PMID: 38786801 PMCID: PMC11123936 DOI: 10.3390/nano14100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Infrared optoelectronic sensors have attracted considerable research interest over the past few decades due to their wide-ranging applications in military, healthcare, environmental monitoring, industrial inspection, and human-computer interaction systems. A comprehensive understanding of infrared optoelectronic sensors is of great importance for achieving their future optimization. This paper comprehensively reviews the recent advancements in infrared optoelectronic sensors. Firstly, their working mechanisms are elucidated. Then, the key metrics for evaluating an infrared optoelectronic sensor are introduced. Subsequently, an overview of promising materials and nanostructures for high-performance infrared optoelectronic sensors, along with the performances of state-of-the-art devices, is presented. Finally, the challenges facing infrared optoelectronic sensors are posed, and some perspectives for the optimization of infrared optoelectronic sensors are discussed, thereby paving the way for the development of future infrared optoelectronic sensors.
Collapse
Affiliation(s)
- Xiang Yu
- School of Physics, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, China
| | - Yun Ji
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Xinyi Shen
- School of Physics, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, China
| | - Xiaoyun Le
- School of Physics, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
4
|
Mahmoodi E, Amiri MH, Salimi A, Frisenda R, Flores E, Ares JR, Ferrer IJ, Castellanos-Gomez A, Ghasemi F. Paper-based broadband flexible photodetectors with van der Waals materials. Sci Rep 2022; 12:12585. [PMID: 35869156 PMCID: PMC9307754 DOI: 10.1038/s41598-022-16834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Layered metal chalcogenide materials are exceptionally appealing in optoelectronic devices thanks to their extraordinary optical properties. Recently, their application as flexible and wearable photodetectors have received a lot of attention. Herein, broadband and high-performance paper-based PDs were established in a very facile and inexpensive method by rubbing molybdenum disulfide and titanium trisulfide crystals on papers. Transferred layers were characterized by SEM, EDX mapping, and Raman analyses, and their optoelectronic properties were evaluated in a wavelength range of 405–810 nm. Although the highest and lowest photoresponsivities were respectively measured for TiS3 (1.50 mA/W) and MoS2 (1.13 μA/W) PDs, the TiS3–MoS2 heterostructure not only had a significant photoresponsivity but also showed the highest on/off ratio (1.82) and fast response time (0.96 s) compared with two other PDs. This advantage is due to the band offset formation at the heterojunction, which efficiently separates the photogenerated electron–hole pairs within the heterostructure. Numerical simulation of the introduced PDs also confirmed the superiority of TiS3–MoS2 heterostructure over the other two PDs and exhibited a good agreement with the experimental results. Finally, MoS2 PD demonstrated very high flexibility under applied strain, but TiS3 based PDs suffered from its fragility and experience a remarkable drain current reduction at strain larger than ± 0.33%. However, at lower strains, all PDs displayed acceptable performances.
Collapse
|