1
|
Jiang S, Liu Y, Yang R, Zhang L, Liu W, Deng K, Yu H, Wang H, Wang L. Amorphous Ni(OH) 2 Coated Cu Dendrites with Superaerophobic Interface for Bipolar Hydrogen Production Assisted with Formaldehyde Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410478. [PMID: 39806856 DOI: 10.1002/smll.202410478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Since formaldehyde oxidation reaction (FOR) can release H2, it is attractive to construct a bipolar hydrogen production system consisting of FOR and hydrogen evolution reaction (HER). Although copper-based catalysts have attracted much attention due to their low cost and high FOR activity, the performance enhancement mechanism lacks in-depth investigation. Here, an amorphous-crystalline catalyst of amorphous nickel hydroxide-coated copper dendrites on copper foam (Cu@Ni(OH)2/CF) is prepared. The modification of Ni(OH)2 resulted in hydrophilic and aerophobic states on the Cu@Ni(OH)2/CF surface, facilitating the transport of liquid-phase species on the electrode surface and accelerating the release of H2. The Open circuit potential (OCP) and density functional theory (DFT) calculations indicate that this core-shell structure facilitates the adsorption of HCHO and OH-. In addition, the catalytic mechanism and reaction pathway of FOR are investigated through in situ FTIR and DFT calculations, and the results showed that the modification of Ni(OH)2 lowered the energy barrier for C─H bond breaking and H─H bond formation. In the HER//FOR system, Pt/C//Cu@Ni(OH)2/CF can provide a current density of 0.5 A cm-2 at 0.36 V and achieve efficient and stable H2 production. This work offers new ideas for designing electrocatalysts for bipolar hydrogen production system assisted with formaldehyde oxidation.
Collapse
Affiliation(s)
- Shaojian Jiang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yuhang Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ruidong Yang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Lijun Zhang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wenke Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
2
|
Qian K, Wei T, Yan X, Qi D, Tan M, Li R. Oxygen Vacancies Promote Formaldehyde Base-Free Reforming into Hydrogen over Cu Doping-Induced Cu-Cu xZn 1-xO Heterointerfaces. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12357-12374. [PMID: 39940117 DOI: 10.1021/acsami.5c01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Element doping is a viable strategy to regulate the metal-support interface for enhancing the catalytic performance of supported metal catalysts. Herein, Cu/ZnO:Cu-TH catalysts are prepared by immobilizing Cu nanoparticles (NPs) on ZnO nanorods featuring an adjustable oxygen vacancy, in which partial Cu atoms at the Cu-ZnO interface are incorporated into the ZnO lattice to form CuxZn1-xO species. Such Cu atom doping induces the creation of distinctive Cu-CuxZn1-xO interface sites and optimizes electron transfer from ZnO to Cu NPs, thereby achieving intermediate activation and ultimately endowing the catalyst with superior performance in reforming alkali-free formaldehyde (HCHO) into hydrogen at low temperatures. The Cu-CuxZn1-xO interface sites serve as pivotal centers for HCHO reforming, where the Cu sites and CuxZn1-xO sites selectively engage in the cleavage of C-H bonds in HCHO and O-H bonds in H2O, respectively. Meanwhile, the presence of oxygen vacancies bolsters the Cu-CuxZn1-xO sites in enhancing the adsorption of HCHO and H2O, further improving the activity. The Cu/ZnO:Cu-450H catalyst, distinguished by abundant Cu-CuxZn1-xO sites and a high concentration of oxygen vacancies, demonstrates optimal activity with TOF values of 16.9 and 72.4 h-1 under anaerobic and aerobic conditions, respectively, which are 8.9 and 29.0 times higher than those of the Cu/ZnO-450N catalyst, which lacks doped Cu atoms and oxygen vacancies.
Collapse
Affiliation(s)
- Kaicheng Qian
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tong Wei
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoqing Yan
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongming Qi
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mingwu Tan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A∗ STAR), 1 Pesek Road,, Jurong Island 627833, Singapore
| | - Renhong Li
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
3
|
Sun Y, Xiao Y, Ren L, Cheng Z, Niu Y, Li Z, Zhang S. Pyrrolic Nitrogen Boosted H 2 Generation from an Aqueous Solution of HCHO at Room Temperature by Metal-Free Carbon Catalysts. J Phys Chem Lett 2024; 15:4538-4545. [PMID: 38636086 DOI: 10.1021/acs.jpclett.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Hydrogen production from organic hydrides represents a promising strategy for the development of safe and sustainable technologies for H2 storage and transportation. Nonetheless, the majority of existing procedures rely on noble metal catalysts and emit greenhouse gases such as CO2/CO. Herein, we demonstrated an alternative N-doped carbon (CN) catalyst for highly efficient and robust H2 production from an aqueous solution of formaldehyde (HCHO). Importantly, this process generated formic acid as a valuable byproduct instead of CO2/CO, enabling a clean H2 generation process with 100% atom economy. Mechanism investigations revealed that the pyrrolic N in the CN catalysts played a critical role in promoting H2 generation via enhancing the transformation of O2 to generate •OO- free radicals. Consequently, the optimized CN catalysts achieved a remarkable H2 generation rate of 13.6 mmol g-1 h-1 at 30 °C. This finding is anticipated to facilitate the development of liquid H2 storage and its large-scale utilization.
Collapse
Affiliation(s)
- Yu Sun
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yiting Xiao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lei Ren
- Longnan Ecological Environment Monitoring Center of Gansu Province, Longnan 746000, China
| | - Ziheng Cheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yaning Niu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhichu Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Sai Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
4
|
Zhou C, Gao J, Deng Y, Wang M, Li D, Xia C. Electric double layer-mediated polarization field for optimizing photogenerated carrier dynamics and thermodynamics. Nat Commun 2023; 14:3592. [PMID: 37328488 DOI: 10.1038/s41467-023-38600-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/10/2023] [Indexed: 06/18/2023] Open
Abstract
Photocatalytic hydrogen evolution efficiency is limited due to unfavorable carrier dynamics and thermodynamic performance. Here, we propose to introduce electronegative molecules to build an electric double layer (EDL) to generate a polarization field instead of the traditional built-in electric field to improve carrier dynamics, and optimize the thermodynamics by regulating the chemical coordination of surface atoms. Based on theoretical simulation, we designed CuNi@EDL and applied it as the cocatalyst of semiconductor photocatalysts, finally achieved a hydrogen evolution rate of 249.6 mmol h-1 g-1 and remained stable after storing under environmental conditions for more than 300 days. The high H2 yield is mainly due to the perfect work function, Fermi level and Gibbs free energy of hydrogen adsorption, improved light absorption ability, enhanced electron transfer dynamics, decreased HER overpotential and effective carrier transfer channel arose by EDL. Here, our work opens up new perspectives for the design and optimization of photosystems.
Collapse
Affiliation(s)
- Chengxin Zhou
- New Energy Materials Laboratory, Sichuan Changhong Electronic (Group) Co.; Ltd., Chengdu, 610041, China
| | - Jian Gao
- New Energy Materials Laboratory, Sichuan Changhong Electronic (Group) Co.; Ltd., Chengdu, 610041, China.
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Yunlong Deng
- New Energy Materials Laboratory, Sichuan Changhong Electronic (Group) Co.; Ltd., Chengdu, 610041, China
| | - Ming Wang
- New Energy Materials Laboratory, Sichuan Changhong Electronic (Group) Co.; Ltd., Chengdu, 610041, China
| | - Dan Li
- New Energy Materials Laboratory, Sichuan Changhong Electronic (Group) Co.; Ltd., Chengdu, 610041, China
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
5
|
Li P, Liu H, Wang C, Fang Y, Guo Z, Lin J, Huang Y, Yu C, Hu L, Tang C, Liu Z. Non‐precious Metal Cu‐Ni Alloy Nanoparticles Supported on Porous Boron Nitride Fibers as Catalysts for Dehydrogenation from Methanolysis of Ammonia‐Borane**. ChemistrySelect 2023. [DOI: 10.1002/slct.202204413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Pengxin Li
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials Hebei University of Technology Tianjin 300130 China
| | - Huanzhao Liu
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials Hebei University of Technology Tianjin 300130 China
| | - Chunyu Wang
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
| | - Yi Fang
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials Hebei University of Technology Tianjin 300130 China
| | - Zhonglu Guo
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials Hebei University of Technology Tianjin 300130 China
| | - Jing Lin
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials Hebei University of Technology Tianjin 300130 China
| | - Yang Huang
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials Hebei University of Technology Tianjin 300130 China
| | - Chao Yu
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials Hebei University of Technology Tianjin 300130 China
| | - Long Hu
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials Hebei University of Technology Tianjin 300130 China
| | - Chengchun Tang
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials Hebei University of Technology Tianjin 300130 China
| | - Zhenya Liu
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials Hebei University of Technology Tianjin 300130 China
| |
Collapse
|
6
|
Oxygen promoted hydrogen production from formaldehyde reforming with oxide-derived Cu nanowires at room temperature. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Gao F, Li C, Ren Y, Li B, Lv C, Yang X, Zhang X, Lu Z, Yu X, Li L. High‐Efficient Ultrathin PdCuMo Porous Nanosheets with Abundant Defects for Oxygen Reduction Reaction. Chemistry 2022; 28:e202201860. [DOI: 10.1002/chem.202201860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Fan Gao
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Chuanliang Li
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Yangyang Ren
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Baosong Li
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Chenhao Lv
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Xiaojing Yang
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Xinghua Zhang
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Zunming Lu
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Xiaofei Yu
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Lanlan Li
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| |
Collapse
|
8
|
Yang K, Liu T, Xiang D, Li Y, Jin Z. Graphdiyne (g-CnH2n-2) based Co3S4 Anchoring and Edge-covalently Modification Coupled with Carbon-defects g-C3N4 for Photocatalytic Hydrogen Production. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Highly Active Palladium-Decorated Reduced Graphene Oxides for Heterogeneous Catalysis and Electrocatalysis: Hydrogen Production from Formaldehyde and Electrochemical Formaldehyde Detection. NANOMATERIALS 2022; 12:nano12111890. [PMID: 35683743 PMCID: PMC9182065 DOI: 10.3390/nano12111890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 01/21/2023]
Abstract
The exploitation of highly efficient and stable hydrogen generation from chemical storage of formaldehyde (FA) is of great significance to the sustainable development of the future. Moreover, developing an accurate, rapid, reliable, and cost-effective catalyst for electrochemical detection of FA in solution is appealing. Herein, we report rational construction of Pd nanoparticles decorated reduced graphene oxides (Pd/rGO) nanohybrids not only as robust catalysts to produce hydrogen from alkaline FA solution and but also electrocatalysts for electrochemical detection of FA. By optimizing the reaction parameters including FA concentration, NaOH concentration and reaction temperature, Pd/rGO with Pd loading of 0.5 wt% could exhibit a high hydrogen production rate of 272 mL g-1min-1 at room temperature of 25 °C, which is 3.2 times that of conventional Pd NPs. In addition, as-prepared Pd/rGO nanohybrids modified glassy carbon (GC) electrodes are used as FA-detected electrochemical sensors. A sensitive oxidation peak with a current density of 8.38 mA/cm2 was observed at 0.12 V (vs. Ag/AgCl) in 0.5 M NaOH containing 10 mM FA over Pd/rGO catalysts with Pd loading of 0.5 wt%. The results showed the prepared Pd/rGO nanocatalyst not only exhibited efficient and stable hydrogen production from alkaline FA solution but also had good electrocatalytic properties with respect to formaldehyde electrooxidation as a result of the synergistic effect of Pd NPs and rGO nanosheets.
Collapse
|
10
|
Wang S, Qiu L, Li C, Zheng Y, Pan L. Highly porous CuO/MnO2 catalyst prepared by gas release-assisted technology and its enhancement of formaldehyde removal efficiency. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04696-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|