1
|
Qamar MZ, Asiam FK, Kang HC, Shahid R, Kaliamurthy AK, Chen C, Lim J, Rahman MM, Lee JJ. Water Oxidation Molecular Assemblies in Dye-Sensitized Photoelectrochemical Cell: An Overview. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411853. [PMID: 39989177 DOI: 10.1002/smll.202411853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/02/2025] [Indexed: 02/25/2025]
Abstract
Dye-sensitized photoelectrochemical cells (DSPECs) are efficient and sustainable approaches for hydrogen production via water splitting, driven by solar energy. Recent advancements have focused on enhancing the performance and stability of photoanodes, which are critical for efficient water oxidation. Herein discussed are the latest innovations including the development of metal-free organic sensitizers, improved chromophore-catalyst assemblies, and core-shell structures. These advances lead to reduced electron-hole recombination, increased light absorption, and enhanced electron transfer efficiency. Pyridine-anchored sensitizers have shown superior stability compared to traditional carboxylate and phosphate anchors in water, while covalently linked chromophores and molecular catalysts provide long-term operational stability. Together, these improvements bring DSPEC technology closer to practical applications in green hydrogen production, addressing key challenges of energy efficiency, scalability, and system durability. These approaches could be explored further toward realizing cost-effective hydrogen production.
Collapse
Affiliation(s)
- Muhammad Zain Qamar
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Francis Kwaku Asiam
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hyeong Cheol Kang
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Raghisa Shahid
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Ashok Kumar Kaliamurthy
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Cheng Chen
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jonghun Lim
- Department of Environment and Energy Engineering, Sungshin Women's University, Seoul, 01133, Republic of Korea
| | - Md Mahbubur Rahman
- Department of Energy Material Science and Engineering, Konkuk University, Chungju, 27478, Republic of Korea
| | - Jae-Joon Lee
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| |
Collapse
|
2
|
Wang X, Xie Y, He R, Zhang J, Arman HD, Mohammed OF, Schanze KS. Linker Engineering toward Tunable Emission Behavior of Porous Interpenetrated Zr-Organic Frameworks. Inorg Chem 2024; 63:11583-11591. [PMID: 38857486 DOI: 10.1021/acs.inorgchem.4c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Conjugated molecules with donor-acceptor-donor (D-A-D) moieties have garnered significant attention for their ability to form luminescent metal-organic frameworks (LMOFs). D-A-D molecules feature tunable bandgaps, which can be varied systematically to control the fluorescence wavelength of LMOFs. In this study, we prepared and characterized the fluorescence properties of two porous interpenetrated Zr-organic frameworks (PIZOFs) constructed using 4,4'-(benzo[c][1,2,5]selenadiazole-4,7-diylbis(ethyne-2,1-diyl))dibenzoic acid (L-Se) or 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diylbis(ethyne-2,1-diyl))dibenzoic acid (L-S) as linkers. The corresponding MOFs are denoted as PIZOF-Se and PIZOF-S, respectively. Through our investigation, we explored the correlation between the structure of the frameworks and their respective optical properties. Our findings revealed that there are distinct differences in the fluorescence properties of the two PIZOFs. Specifically, the fluorescence of PIZOF-S is red-shifted from that characteristic of the corresponding linker, L-S. By contrast, the fluorescence of PIZOF-Se is substantially blue-shifted from that of linker L-Se. The emission of mixed-linker MOFs is explored by combining L-S or L-Se with structurally analogous, but nonfluorescent linker, 4,4'-((perfluoro-1,4-phenylene)bis(ethyne-2,1-diyl))dibenzoic acid (L-F). Based on steady-state and time-resolved photoluminescence experiments, as well as confocal fluorescence microscopy combined with fluorescence lifetime imaging (FILM), we demonstrated that linker engineering is an effective method to tune the emission behavior of LMOFs.
Collapse
Affiliation(s)
- Xiaodan Wang
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Yi Xie
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Ru He
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Jian Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, United States
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Omar F Mohammed
- Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kirk S Schanze
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| |
Collapse
|
3
|
Zhu K, Einhaus LM, Mul G, Huijser A. Photophysical Study on the Effect of the External Potential on NiO-Based Photocathodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5217-5224. [PMID: 38235571 PMCID: PMC10835655 DOI: 10.1021/acsami.3c09566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024]
Abstract
In the present study, we investigate the effects of the applied external potential on a dye-sensitized NiO photocathode by time-resolved photoluminescence and femtosecond transient absorption spectroscopy under operating conditions. Instead of the anticipated acceleration of photoinduced hole injection from dye into NiO at a more negative applied potential, we observe that both hole injection and charge recombination are slowed down. We cautiously assign this effect to a variation in OH- ion concentration in the inner Helmholtz plane of the electrochemical double layer with applied potential, warranting further investigation for the realization of efficient solar fuel devices.
Collapse
Affiliation(s)
- Kaijian Zhu
- PhotoCatalytic Synthesis
Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Lisanne M. Einhaus
- PhotoCatalytic Synthesis
Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Guido Mul
- PhotoCatalytic Synthesis
Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Annemarie Huijser
- PhotoCatalytic Synthesis
Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| |
Collapse
|
4
|
Moinel A, Brochnow M, Aumaître C, Giannoudis E, Fize J, Saint-Pierre C, Pécaut J, Maldivi P, Artero V, Demadrille R, Chavarot-Kerlidou M. Push-pull organic dyes and dye-catalyst assembly featuring a benzothiadiazole unit for photoelectrochemical hydrogen production. SUSTAINABLE ENERGY & FUELS 2022; 6:3565-3572. [PMID: 35979141 PMCID: PMC9337615 DOI: 10.1039/d2se00292b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
In this work, we report the design and the preparation of two new dyes and a molecular dyad for the photoelectrochemical hydrogen production from water in a dye-sensitized photoelectrochemical cell (DSPEC). We designed dyes that include a benzothiadiazole (BTD) and an indacenodithiophene (IDT) units, and we obtained a new molecular dyad by covalent coupling with the cobalt diimine-dioxime catalyst. The introduction of the benzothiadiazole core in the structure improves the absorption properties and leads to an extension of the spectrum in the visible range up to 650 nm. The photoelectrochemical properties of the new dyad were evaluated on pristine and lithium-doped NiO electrodes. We demonstrate that increasing the light harvesting efficiency of the dyad by introducing a IDT-BTD chromophore is clearly beneficial for the photoelectrochemical activity. We also demonstrate that lithium doping of NiO, which improves the electronic conductivity of the mesoporous film, leads to a significant increase in performance, in terms of TON and F.E., more than doubled with our new dyad. This BTD-based molecular system outperforms the results of previously reported dyads using the same catalyst.
Collapse
Affiliation(s)
- A Moinel
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SyMMES 17 rue des martyrs 38000 Grenoble France
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs F-38000 Grenoble France
| | - M Brochnow
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SyMMES 17 rue des martyrs 38000 Grenoble France
| | - C Aumaître
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SyMMES 17 rue des martyrs 38000 Grenoble France
| | - E Giannoudis
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs F-38000 Grenoble France
| | - J Fize
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs F-38000 Grenoble France
| | - C Saint-Pierre
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SyMMES 17 rue des martyrs 38000 Grenoble France
| | - J Pécaut
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SyMMES 17 rue des martyrs 38000 Grenoble France
| | - P Maldivi
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SyMMES 17 rue des martyrs 38000 Grenoble France
| | - V Artero
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs F-38000 Grenoble France
| | - R Demadrille
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SyMMES 17 rue des martyrs 38000 Grenoble France
| | - M Chavarot-Kerlidou
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs F-38000 Grenoble France
| |
Collapse
|