1
|
Engel A, Drault F, Demoustier-Champagne SM, Hermans S. High Yield Au Nanorods Synthesis: Investigation of the Synthesis Parameters Tunability by Statistical Methods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40326919 DOI: 10.1021/acs.langmuir.5c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Gold nanorods are well-known for their localized surface plasmon resonance (LSPR) properties, which are sensitive to both their size and morphology. This LSPR effect, combined with their absorption ranging from the visible to the infrared portion of light, makes them particularly suitable for applications in fields such as photocatalysis, photovoltaics, biosensing, and medical imaging. Traditionally, their synthesis has been based on a seed-mediated method with the use of ascorbic acid as a mild reducing agent. In this work, hydroquinone is used as a reducing agent to achieve nearly quantitative yield in terms of gold consumption. Using a customized design of experiment, the present study explores the influence of seed, silver nitrate, cetyltrimethylammonium bromide (CTAB), hydroquinone, and gold precursor concentrations on the second LSPR wavelength value, linked to the rod aspect ratio (AR). Statistical analysis of the results revealed multiple significant quadratic effects and interactions, notably between CTAB and silver nitrate, indicating the formation of a complex between these two components that results in anisotropic growth. The predictive power of the developed model was investigated and validated by its accuracy in predicting, for new conditions, the plasmonic properties of nanorods with a well-controlled AR. This comprehensive understanding of the tunability and mechanism of the process provides valuable insights into optimizing the production of gold nanorods with desired properties for various applications. To this end, a web application was developed to enable any researcher to freely access the model designed in this work and choose the optimal experimental conditions for synthesis.
Collapse
Affiliation(s)
- Antonin Engel
- Institute of Condensed Matter and Nanosciences (MOST Division), UCLouvain, Place Louis Pasteur, 1/L4.01.03, 1348 Louvain-la-Neuve, Belgium
- Institute of Condensed Matter and Nanosciences (BSMA Division), UCLouvain, Place Louis Pasteur, 1/L4.01.10, 1348 Louvain-la-Neuve, Belgium
| | - Fabien Drault
- Labiris, Sustainable Chemistry, 1 Avenue E. Gryson, B-1070 Brussels, Belgium
| | | | - Sophie Hermans
- Institute of Condensed Matter and Nanosciences (MOST Division), UCLouvain, Place Louis Pasteur, 1/L4.01.03, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Dasari HP, Patil SS, Kamath RS, Kisiela-Czajka AM. Ceria-based electrospun nanofibers and their widespread applications: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124656. [PMID: 40010286 DOI: 10.1016/j.jenvman.2025.124656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Electrospinning is a highly efficient technique for producing nanofibers, and it is noted for its cost-effectiveness, versatility, and user-friendly nature. The article evaluates the production of Ceria-based nanofibers primarily utilizing electrospinning technology and electrospinning parameters and explores their various potential applications. Ceria infused with lanthanoids and transition metals demonstrates significant potential as catalysts, optical sensors, and supercapacitors in various energy-related industrial applications. Their role as catalysts in water-gas and reverse water-gas shift reactions greatly enhances the water-splitting reaction in the Deacon process. Composite ceria nanofibers for wound therapy were developed by integrating polyurethane, cellulose acetate, and zein for biological applications. Soot-induced blockages in automobile filters pose challenges for the regeneration process of diesel particle filters, and the effectiveness of ceria-based nanofibers in soot and CO oxidation has been explored. Ce-based nanofibers produced via the electrospinning technique, with different operating parameters, exhibit notable variations in their morphology. Research indicates that, compared to traditional ceria, Ce-based nanofibers demonstrate greater surface area and porosity, a higher density of oxygen vacancies, and improved oxygen transfer efficiency, all essential for numerous redox and catalytic processes. The nanofibrous structure enhances electrical conductivity by expanding the surface area accessible for interaction with active components. The nanofibrous composite structure exhibits enhanced thermal and mechanical durability, making it appealing for numerous applications.
Collapse
Affiliation(s)
- Hari Prasad Dasari
- Energy & Catalysis Materials Laboratory, Chemical Engineering Department, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, Karnataka, India.
| | - Sunaina S Patil
- Energy & Catalysis Materials Laboratory, Chemical Engineering Department, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, Karnataka, India; Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland
| | - Riya S Kamath
- Energy & Catalysis Materials Laboratory, Chemical Engineering Department, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, Karnataka, India
| | - Anna M Kisiela-Czajka
- Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland
| |
Collapse
|
3
|
Othman A, Gowda A, Andreescu D, Hassan MH, Babu SV, Seo J, Andreescu S. Two decades of ceria nanoparticle research: structure, properties and emerging applications. MATERIALS HORIZONS 2024; 11:3213-3266. [PMID: 38717455 DOI: 10.1039/d4mh00055b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cerium oxide nanoparticles (CeNPs) are versatile materials with unique and unusual properties that vary depending on their surface chemistry, size, shape, coating, oxidation states, crystallinity, dopant, and structural and surface defects. This review encompasses advances made over the past twenty years in the development of CeNPs and ceria-based nanostructures, the structural determinants affecting their activity, and translation of these distinct features into applications. The two oxidation states of nanosized CeNPs (Ce3+/Ce4+) coexisting at the nanoscale level facilitate the formation of oxygen vacancies and defect states, which confer extremely high reactivity and oxygen buffering capacity and the ability to act as catalysts for oxidation and reduction reactions. However, the method of synthesis, surface functionalization, surface coating and defects are important factors in determining their properties. This review highlights key properties of CeNPs, their synthesis, interactions, and reaction pathways and provides examples of emerging applications. Due to their unique properties, CeNPs have become quintessential candidates for catalysis, chemical mechanical planarization (CMP), sensing, biomedical applications, and environmental remediation, with tremendous potential to create novel products and translational innovations in a wide range of industries. This review highlights the timely relevance and the transformative potential of these materials in addressing societal challenges and driving technological advancements across these fields.
Collapse
Affiliation(s)
- Ali Othman
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Akshay Gowda
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Daniel Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| | - Mohamed H Hassan
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| | - S V Babu
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Jihoon Seo
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| |
Collapse
|
4
|
Guo Y, Shu T, Wang Y, Cui C, Zhou Q, Zhang Q, Cheng Y, Ge Z, Chen G, Zhang Y. Dynamic Thermosetting Resins with Synergistic Enhanced Strength and Toughness through Combination with Rigid and Soft Microdomains. Macromol Rapid Commun 2024:e2400036. [PMID: 38453138 DOI: 10.1002/marc.202400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Preparation of materials that possess highly strong and tough properties simultaneously is a great challenge. Thermosetting resins as a type of widely used polymeric materials without synergistic strength and toughness limit their applications in some special fields. In this report, an effective strategy to prepare thermosetting resins with synergistic strength and toughness, is presented. In this method, the soft and rigid microspheres with dynamic hemiaminal bonds are fabricated first, followed by hot-pressing to crosslink at the interfaces. Specifically, the rigid or soft microspheres are prepared via precipitation polymerization. After hot-pressing, the resulting rigid-soft blending materials exhibit superior strength and toughness, simultaneously. As compared with the precursor rigid or soft materials, the toughness of the rigid-soft blending films (RSBFs) is improved to 240% and 2100%, respectively, while the strength is comparable to the rigid precursor. As compared with the traditional crushing, blending, and hot-pressing of rigid or soft materials to get the nonuniform materials, the strength and toughness of the RSBFs are improved to 168% and 255%, respectively. This approach holds significant promise for the fabrication of polymer thermosets with a unique combination of strength and toughness.
Collapse
Affiliation(s)
- Yinzhou Guo
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tiantian Shu
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yihan Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chenhui Cui
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qinghao Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiang Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yilong Cheng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhishen Ge
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Gang Chen
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yanfeng Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
5
|
Simultaneous electro-generation/polymerization of Cu nanocluster embedded conductive poly(2,2':5',2''-terthiophene) films at micro and macro liquid/liquid interfaces. Sci Rep 2023; 13:1201. [PMID: 36681717 PMCID: PMC9867727 DOI: 10.1038/s41598-023-28391-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Cu nanoparticles (NPs) have been shown to be excellent electrocatalysts, particularly for CO2 reduction - a critical reaction for sequestering anthropogenic, atmospheric carbon. Herein, the micro interface between two immiscible electrolyte solutions (ITIES) is exploited for the simultaneous electropolymerization of 2,2':5',2''-terthiophene (TT) and reduction of Cu2+ to Cu nanoparticles (NPs) generating a flexible electrocatalytic composite electrode material. TT acts as an electron donor in 1,2-dichloroethane (DCE) through heterogeneous electron transfer across the water|DCE (w|DCE) interface to CuSO4 dissolved in water. The nanocomposite formation process was probed using cyclic voltammetry as well as electrochemical impedance spectroscopy (EIS). CV and EIS data show that the film forms quickly; however, the interfacial reaction is not spontaneous and does not proceed without an applied potential. At high [TT] the heterogeneous electron transfer wave was recorded voltammetrically but not at low [TT]. However, probing the edge of the polarizable potential window was found to be sufficient to initiate electrogeneration/electropolymerization. SEM and TEM were used to image and analyze the final Cu NP/poly-TT composites and it was discovered that there is a concomitant decrease in NP size with increasing [TT]. Preliminary electrocatalysis results at a nanocomposite modified large glassy carbon electrode saw a > 2 × increase in CO2 reduction currents versus an unmodified electrode. These data suggest that this strategy is a promising means of generating electrocatalytic materials for carbon capture. However, films electrosynthesized at a micro and ~ 1 mm ITIES demonstrated poor reusability.
Collapse
|