1
|
Liu Y, Yue Z, Jin C, Zheng L, Shi J, Li D, Wang Y, Bai J, Leng K, Wang W, Qu Y, Li Q. Isolated Tin Enhanced CO Coverage-Regulation on Sn 1Cu Alloy for Selective CO 2 Electroreduction to C 2+ Products. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409259. [PMID: 39811893 DOI: 10.1002/smll.202409259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Electricity-powered C─C coupling of CO2 represents an attractive strategy for producing valuable commodity chemicals with renewable energy, but it is still challenging to gain high C2+ selectivity at high current density. Here, a Sn1Cu single-atom alloy (SAA) is reported with isolated Sn atom embedded into the Cu lattice, as efficient ectrocatalyst for CO2 reduction. The as prepared Sn1Cu-SAA catalyst shows a maximal C2+ Faradaic efficiency of 79.3% at 800 mA cm-2, which can be kept stable for at least 16 h. The combination of in situ spectroscopy and DFT calculation reveal that the introduced Sn atom promote the activation of CO2 to *CO, and enhance the CO coverage on Sn1Cu-SAA. As results, the reaction barrier of C─C coupling pathway is significantly reduced, boosting the generation of C2+ products. These findings offer a novel sight for fabricating multicarbon products from CO2 via regulation the concentration of intermediates on catalytic interface.
Collapse
Affiliation(s)
- Yijiang Liu
- International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China
| | - Zongye Yue
- International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China
| | - Chenghao Jin
- International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Beijing, 100039, P. R. China
| | - Jinbo Shi
- International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China
| | - Dingding Li
- International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China
| | - Yi Wang
- International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China
| | - Jinbo Bai
- CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS-Laboratoire de Mécanique Paris-Saclay, Université Paris-Saclay, 8-10 rue Joliot-Curie, Gif-sur-Yvette, 91190, France
| | - Kunyue Leng
- International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China
| | - Wentao Wang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing, 102413, P. R. China
| | - Yunteng Qu
- International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China
| | - Qingyang Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
2
|
Ali RB, Lee YJ, Sial QA, Duy LT, Seo H. A new insight into vacancy modulation in lead-doped tungsten oxide nonarchitect for photoelectrochemical water splitting: An experimental and density functional theory approach. J Colloid Interface Sci 2024; 665:19-31. [PMID: 38513405 DOI: 10.1016/j.jcis.2024.03.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/02/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
In this study, the impact of lead (Pb) doping on the photoelectrochemical (PEC) water splitting performance of tungsten oxide (WO3) photoanodes was investigated through a combination of experimental and theoretical approaches. Pb-doped WO3 nanostructured thin films were synthesized hydrothermally, and extensive characterizations were conducted to study their morphologies, band edge, optical and photoelectrochemical properties. Pb-doped WO3 exhibited efficient carrier density and charge separations by reducing the charge transfer resistance. The 0.96 at% Pb doping shows a record photocurrent of ∼ 1.49 mAcm-2 and ∼ 3.44 mAcm-2 (with the hole scavenger) at 1.23 V vs. RHE besides yielding a high charge separation and Faradaic efficiencies of ∼ 86 % and > 90 %, respectively. A shift in the Fermi level towards the conduction band was also observed upon the Pb doping. Additionally, density functional theory (DFT) simulations demonstrated the changes in the density of states and bandgap upon Pb doping, exhibiting favorable changes in the surface and bulk properties of WO3.
Collapse
Affiliation(s)
- Rana Basit Ali
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Young Jae Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Qadeer Akbar Sial
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Le Thai Duy
- Faculty of Materials Science and Technology, University of Science, HoChiMinh city 70000, Viet Nam; Vietnam National University (VNU), HoChiMinh city 70000, Viet Nam
| | - Hyungtak Seo
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea; Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
3
|
Jian J, Wang M, Wang Z, Meng J, Yang Y, Chang L. Tin-doped NiFe 2O 4 nanoblocks grown on an iron foil for efficient and stable water splitting at large current densities. Dalton Trans 2024; 53:520-524. [PMID: 38051219 DOI: 10.1039/d3dt03355d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Developing low-cost and self-supported bifunctional catalysts for highly efficient water splitting devices is of great significance. Herein, different from previously reported NiFe2O4-based electrocatalysts, we have grown nano-NiFe2O4 directly onto the iron foil (IF) surface and in situ introduced Sn4+ into NiFe2O4. The resulting experimental phenomena confirmed that the as-synthesized Sn-NiFe2O4/IF can deliver large-current densities (>1000 mA cm-2) during oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) processes at a low overpotential. The needed overpotentials at the current density of 10 and 1000 mA cm-2 are 231 and 368 mV for OER and 57 and 439 mV for HER, respectively. Additionally, when applied for the two-electrode water splitting, the corresponding needed voltage for Sn-NiFe2O4/IF at the current density of 10 mA cm-2 was only 1.56 V, which was comparable to the commercial Pt/C-RuO2/IF electrode. Thus, the introduced Sn4+ greatly enhanced the electrocatalytic property of Sn-NiFe2O4/IF, resulting in a superior bifunctional catalyst that can be applied for large-scale hydrogen production.
Collapse
Affiliation(s)
- Juan Jian
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China.
| | - Meiting Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China.
| | - Zhuo Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China.
| | - Jingwen Meng
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China.
| | - Yuqin Yang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China.
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China.
| |
Collapse
|
4
|
Ibrahim KB, Shifa TA, Bordin M, Moretti E, Wu HL, Vomiero A. Confinement Accelerates Water Oxidation Catalysis: Evidence from In Situ Studies. SMALL METHODS 2023; 7:e2300348. [PMID: 37350490 DOI: 10.1002/smtd.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Indexed: 06/24/2023]
Abstract
Basic insight into the structural evolution of electrocatalysts under operating conditions is of substantial importance for designing water oxidation catalysts. The first-row transition metal-based catalysts present state-of-the-art oxygen evolution reaction (OER) performance under alkaline conditions. Apparently, confinement has become an exciting strategy to boost the performance of these catalysts. The van der Waals (vdW) gaps of transition metal dichalcogenides are acknowledged to serve as a suitable platform to confine the first-row transition metal catalysts. This study focuses on confining Ni(OH)2 nanoparticle in the vdW gaps of 2D exfoliated SnS2 (Ex-SnS2 ) to accelerate water oxidation and to guarantee long term durability in alkaline solutions. The trends in oxidation states of Ni are probed during OER catalysis. The in situ studies confirm that the confined system produces a favorable environment for accelerated oxygen gas evolution, whereas the un-confined system proceeds with a relatively slower kinetics. The outstanding OER activity and excellent stability, with an overpotential of 300 mV at 100 mA cm-2 and Tafel slope as low as 93 mV dec-1 results from the confinement effect. This study sheds light on the OER mechanism of confined catalysis and opens up a way to develop efficient and low-cost electrocatalysts.
Collapse
Affiliation(s)
- Kassa Belay Ibrahim
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, 30170, Italy
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Tofik Ahmed Shifa
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, 30170, Italy
| | - Matteo Bordin
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, 30170, Italy
| | - Elisa Moretti
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, 30170, Italy
| | - Heng-Liang Wu
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Alberto Vomiero
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, 30170, Italy
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, SE-97187, Sweden
| |
Collapse
|
5
|
Li J, Wei Q, Alomar M, Zhang J, Yang S, Xu X, Lao X, Lan M, Shen Y, Xiao J, Tu Z. Rational Design of Trimetallic Sulfide Electrodes for Alkaline Water Electrolysis with Ampere-Level Current Density. CHEMSUSCHEM 2023; 16:e202300308. [PMID: 37121888 DOI: 10.1002/cssc.202300308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 06/19/2023]
Abstract
Electrochemical water splitting is considered an environmentally friendly approach to hydrogen generation. However, it is difficult to achieve high current density and stability. Herein, we design an amorphous/crystalline heterostructure electrode based on trimetallic sulfide over nickel mesh substrate (NiFeMoS/NM), which only needs low overpotentials of 352 mV, 249 mV, and 360 mV to achieve an anodic oxygen evolution reaction (OER) current density of 1 A cm-2 in 1 M KOH, strong alkaline electrolyte (7.6 M KOH), and alkaline-simulated seawater, respectively. More importantly, it also shows superior stability with negligible decay after continuous work for 120 h at 1 A cm-2 in the strong alkaline electrolyte. The excellent OER performance of the as-obtained electrode can be attributed to the strong electronic interactions between different metal atoms, abundant amorphous/crystalline hetero-interfaces, and 3D porous nickel mesh structure. Finally, we coupled NiFeMoS/NM as both the anode and cathode in the anion exchange membrane electrolyzer, which can achieve low cell voltage and high stability at ampere-level current density, demonstrating the great potential of practicability.
Collapse
Affiliation(s)
- Jingwen Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qing Wei
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Muneerah Alomar
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P. O. Box, 84428, Riyadh 11671, Saudi Arabia
| | - Jian Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shengxiong Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiaoyang Xu
- National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic Institute, Jingdezhen, 333000, P. R. China
| | - Xinbin Lao
- National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic Institute, Jingdezhen, 333000, P. R. China
| | - Minqiu Lan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yuhan Shen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430074, P. R. China
| | - Junwu Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhengkai Tu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
6
|
Li J, Song M, Hu Y, Zhu Y, Zhang J, Wang D. Hybrid Heterostructure Ni 3 N|NiFeP/FF Self-Supporting Electrode for High-Current-Density Alkaline Water Electrolysis. SMALL METHODS 2023; 7:e2201616. [PMID: 36855203 DOI: 10.1002/smtd.202201616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Exploring earth-abundant and efficient electrocatalysts for oxygen evolution reaction (OER) is an urgent need and significant to water electrolysis. Although great achievements have been made, it is still challenging to achieve industrial current density and stability. Herein, a hybrid heterostructure electrode based on Ni3 N and NiFeP over Fe foam substrate (Ni3 N|NiFeP/FF) is reported, along with 3D-interconnected hierarchical porous architecture, achieving the low overpotentials of 287, 178, and 290 mV at 500 mA cm-2 in 1 m KOH, 30 wt% KOH, and alkaline simulated seawater, respectively, with excellent durability at 800 mA cm-2 over 120 h, which can satisfy the requirements of industrial water electrolysis. Here, the hybrid heterostructure can ensure the low energy barrier of the catalytic active sites, the 3D-interconnected hierarchical porous architecture can facilitate the fast mass/ions/electrons transformation, which contributes together to boost the superb water splitting performance. Furthermore, the COMSOL simulations confirm the multiple merits of the designed electrode during the water electrocatalysis. The present work provides a new strategy in the design and engineering of high-performance electrodes for industrial water electrolysis.
Collapse
Affiliation(s)
- Jingwen Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Min Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yezhou Hu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999007, P. R. China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999007, P. R. China
| | - Jian Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
7
|
Hydrothermal Synthesis of Nickel Oxide and Its Application in the Additive Manufacturing of Planar Nanostructures. Molecules 2023; 28:molecules28062515. [PMID: 36985485 PMCID: PMC10059085 DOI: 10.3390/molecules28062515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The hydrothermal synthesis of nickel oxide in the presence of triethanolamine was studied. Furthermore, the relationship between the synthesis conditions, thermal behavior, crystal structure features, phase composition and microstructure of semi-products, and the target oxide nanopowders was established. The thermal behavior of the semi-products was studied using a simultaneous thermal analysis (in particular, using one that involved thermogravimetric analysis and differential scanning calorimetry, TGA/DSC). An X-ray diffraction (XRD) analysis revealed that varying the triethanolamine and nickel chloride concentration in the reaction system can govern the formation of α- and β-Ni(OH)2-based semi-products that contain Ni(HCO3)2 or Ni2(CO3)(OH)2 as additional components. The set of functional groups in the powders was determined using a Fourier-transform infrared (FTIR) spectroscopy analysis. Using microextrusion printing, a composite NiO—(CeO2)0.80(Sm2O3)0.20 anode film was fabricated. Using XRD, scanning electron microscopy (SEM), and atomic force microscopy (AFM) analyses, it was demonstrated that the crystal structure, dispersity, and microstructure character of the obtained material correspond to the initial nanopowders. Using Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM), the local electrophysical properties of the printed composite film were examined. The value of its conductivity was evaluated using the four-probe method on a direct current in the temperature range of 300–650 °C. The activation energy for the 500–650 °C region, which is of most interest in the context of intermediate-temperature SOFCs working temperatures, has been estimated.
Collapse
|
8
|
Ye C, Cheng H, Zheng L, Lin J, Xu Q, Qiu Y, Pan Z, Qiu Y. Tailoring Metal-Oxygen Bonds Boosts Oxygen Reaction Kinetics for High-Performance Zinc-Air Batteries. NANO LETTERS 2023; 23:1573-1581. [PMID: 36724081 DOI: 10.1021/acs.nanolett.3c00053] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal-oxygen bonds significantly affect the oxygen reaction kinetics of metal oxide-based catalysts but still face the bottlenecks of limited cognition and insufficient regulation. Herein, we develop a unique strategy to accurately tailor metal-oxygen bond structure via amorphous/crystalline heterojunction realized by ion-exchange. Compared with pristine amorphous CoSnO3-y, iron ion-exchange induced amorphous/crystalline structure strengthens the Sn-O bond, weakens the Co-O bond strength, and introduces additional Fe-O bond, accompanied by abundant cobalt defects and optimal oxygen defects with larger pore structure and specific surface area. The optimization of metal-oxygen bond structure is dominated by the introduction of crystal structure and further promoted by the introduction of Fe-O bond and rich Co defect. Remarkably, the Fe doped amorphous/crystalline catalyst (Co1-xSnO3-y-Fe0.021-A/C) demonstrates excellent oxygen evolution reaction and oxygen reduction reaction activities with a smaller potential gap (ΔE = 0.687 V), and the Zn-air battery based with Co1-xSnO3-y-Fe0.021-A/C exhibits excellent output power density, cycle performance, and flexibility.
Collapse
Affiliation(s)
- Changchun Ye
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai201804, P. R. China
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510000, Guangdong, P. R. China
| | - Hongfei Cheng
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai201804, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Jiajin Lin
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510000, Guangdong, P. R. China
| | - Qingshuai Xu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510000, Guangdong, P. R. China
| | - Yongfu Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan523808, Guangdong, P. R. China
| | - Zhenghui Pan
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai201804, P. R. China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510000, Guangdong, P. R. China
| |
Collapse
|
9
|
Raveendran A, Chandran M, Dhanusuraman R. A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC Adv 2023; 13:3843-3876. [PMID: 36756592 PMCID: PMC9890951 DOI: 10.1039/d2ra07642j] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Electrochemical splitting of water is an appealing solution for energy storage and conversion to overcome the reliance on depleting fossil fuel reserves and prevent severe deterioration of the global climate. Though there are several fuel cells, hydrogen (H2) and oxygen (O2) fuel cells have zero carbon emissions, and water is the only by-product. Countless researchers worldwide are working on the fundamentals, i.e. the parameters affecting the electrocatalysis of water splitting and electrocatalysts that could improve the performance of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) and overall simplify the water electrolysis process. Noble metals like platinum for HER and ruthenium and iridium for OER were used earlier; however, being expensive, there are more feasible options than employing these metals for all commercialization. The review discusses the recent developments in metal and metalloid HER and OER electrocatalysts from the s, p and d block elements. The evaluation perspectives for electrocatalysts of electrochemical water splitting are also highlighted.
Collapse
Affiliation(s)
- Asha Raveendran
- Nano Electrochemistry Lab (NEL), Department of Chemistry, National Institute of Technology Puducherry Karaikal - 609609 India
| | - Mijun Chandran
- Department of Chemistry, Central University of Tamil Nadu Thiruvarur - 610005 India
| | - Ragupathy Dhanusuraman
- Nano Electrochemistry Lab (NEL), Department of Chemistry, National Institute of Technology Puducherry Karaikal - 609609 India
| |
Collapse
|
10
|
Bera K, Madhu R, Dhandapani HN, Nagappan S, De A, Kundu S. Accelerating the Electrocatalytic Performance of NiFe-LDH via Sn Doping toward the Water Oxidation Reaction under Alkaline Condition. Inorg Chem 2022; 61:16895-16904. [PMID: 36221930 DOI: 10.1021/acs.inorgchem.2c02947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To generate green hydrogen by water electrolysis, it is vital to develop highly efficient electrocatalysts for the oxygen evolution reaction (OER). The utilization of various 3d transition metal-based layered double hydroxides (LDHs), especially NiFe-LDH, has gained vast attention for OER under alkaline conditions. However, the lack of a proper electronic structure of the NiFe-LDH and low stability under high-pH conditions limit its large-scale application. To overcome these difficulties, in this study, we constructed an Sn-doped NiFe-LDH material using a simple wet-chemical method. The doping of Sn will synergistically increase the active surface sites of NiFe-LDH. The highly active NiFe-LDH Sn0.015(M) shows excellent OER activity by requiring an overpotential of 250 mV to drive 10 mA/cm2 current density, whereas the bare NiFe-LDH required an overpotential of 295 mV at the same current density. Also, NiFe-LDH Sn0.015(M) shows excellent long-term stability for 50 h in 1 M KOH and also exhibits a higher TOF value of 0.495 s-1, which is almost five times higher than that of bare NiFe-LDH. This study highlights Sn doping as an effective strategy for the development of low-cost, effective, stable, self-supported electrocatalysts with a high current density for improved OER and other catalytic applications in the near future.
Collapse
Affiliation(s)
- Krishnendu Bera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Aditi De
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
11
|
Jian J, Nie P, Wang Z, Qiao Y, Wang H, Zhang C, Xue X, Fang L, Chang L. V 5+-Doped Potassium Ferrite as an Efficient Trifunctional Catalyst for Large-Current-Density Water Splitting and Long-Life Rechargeable Zn-Air Battery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36721-36730. [PMID: 35939293 DOI: 10.1021/acsami.2c09725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing non-noble metal catalyst with super trifunctional activities for efficient overall water splitting (OWS) and rechargeable Zn-air battery (ZAB) is urgently needed. However, catalysts with excellent oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) performances are relatively few. Although metal-ionic-conductor K2Fe4O7 (KFO) can output large current densities for OER/HER even in 10.0 M KOH electrolyte, its water-splitting property still needs to be further improved. Herein, we introduced V5+ directly into KFO and synthesized the binder-free nickel foam (NF) basal V-KFO nanoparticles (labeled as V-KFO/NF). Both the theoretical analysis and actual experimental data certify that V5+ doping enhances the instinct water-splitting property of V-KFO/NF. Additionally, V-KFO/NF can directly serve as the air cathode of liquid/flexible ZABs. The assembled liquid ZAB can continue the charge-discharge cycling testing with a lower voltage gap (0.834 V) and a longer operation life (>550 h) at 10 mA cm-2. Meanwhile, the assembled flexible ZAB can drive the two-electrode water-splitting unit of V-KFO/NF and needs only 1.54 V to achieve the current density of 10 mA cm-2, which is much lower than that of KFO/NF (1.59 V). This work not only provides a novel and efficient trifunctional catalyst for a self-powered water-splitting device but also is the foundation support for other heteroatom-doped low-cost materials.
Collapse
Affiliation(s)
- Juan Jian
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Ping Nie
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Zhuo Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Yu Qiao
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Hairui Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Chenyang Zhang
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, P. R. China
| | - Xiangxin Xue
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Luan Fang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| |
Collapse
|