1
|
Lin H, Shen Q, Ma M, Ji R, Guo H, Qi H, Xing W, Tang H. 3D Printing of Porous Ceramics for Enhanced Thermal Insulation Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412554. [PMID: 39721029 PMCID: PMC11831498 DOI: 10.1002/advs.202412554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Porous thermal insulating ceramics play a pivotal role in both industrial processes and daily life by offering effective insulation solutions that reduce energy consumption, enhance building comfort, and contribute to the sustainability of industrial production. This review offers a comprehensive examination of porous thermal insulating ceramics produced by 3D printing, providing an in-depth analysis of various 3D printing techniques and materials used to produce porous ceramics, detailing the fabrication processes, advantages, and limitations of these methods. Recent advances in 3D printed porous thermal insulating ceramics are thoroughly examined, with a particular focus on pore structure design and optimization strategies for high-performance thermal insulation. This review also addresses the challenges and barriers to widespread adoption while highlighting future research directions and emerging trends poised to drive innovation. By showcasing the transformative potential of 3D printing in revolutionizing traditional porous ceramics manufacturing methods and enhancing thermal insulation performance, this review underscores the critical role of 3D printed porous ceramics in advancing thermal insulation technology.
Collapse
Affiliation(s)
- He Lin
- Advanced Materials Additive Manufacturing Innovation Research CentreCollege of EngineeringHangzhou City UniversityHangzhou310015P. R. China
| | - Qintao Shen
- School of Mechanical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Ming Ma
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Renquan Ji
- Advanced Materials Additive Manufacturing Innovation Research CentreCollege of EngineeringHangzhou City UniversityHangzhou310015P. R. China
| | - Huijun Guo
- Advanced Materials Additive Manufacturing Innovation Research CentreCollege of EngineeringHangzhou City UniversityHangzhou310015P. R. China
| | - Huan Qi
- Advanced Materials Additive Manufacturing Innovation Research CentreCollege of EngineeringHangzhou City UniversityHangzhou310015P. R. China
| | - Wang Xing
- Advanced Materials Additive Manufacturing Innovation Research CentreCollege of EngineeringHangzhou City UniversityHangzhou310015P. R. China
| | - Huiping Tang
- Advanced Materials Additive Manufacturing Innovation Research CentreCollege of EngineeringHangzhou City UniversityHangzhou310015P. R. China
| |
Collapse
|
2
|
Liu C, Wang M, Wang J, Xu G, Zhang S, Ding F. Double-Phase-Networking Polyimide Hybrid Aerogel with Exceptional Dimensional Stability for Superior Thermal Protection System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404104. [PMID: 38953403 DOI: 10.1002/smll.202404104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Polyimide aerogels have been extensively used in thermal protection domain because they possess a combination of intrinsic characteristics of aerogels and unique features of polyimide. However, polyimide aerogels still suffer significant thermally induced shrinkage at temperatures above 200 °C, restricting their application at high temperature. Here, a novel "double-phase-networking" strategy is proposed for fabricating a lightweight and mechanically robust polyimide hybrid aerogel by forming silica-zirconia-phase networking skeletons, which possess exceptional dimensional stability in high-temperature environments and superior thermal insulation. The rational mechanism responsible for the formation of double-phase-networking aerogel is further explained, generally attributing to chemical crosslinking reactions and supramolecular hydrogen bond interactions derived from the main chains of polyimide and silane/zirconia precursor/sol. The as-prepared aerogels exhibit excellent high-temperature (270 °C) dimensional stability (5.09% ± 0.16%), anti-thermal-shock properties, and low thermal conductivity. Moreover, the hydrophobic treatment provides aerogels high water resistance with water contact angle of 136.9°, further suggestive of low moisture content of 3.6% after exposure to 70 °C and 85% relative humidity for 64 h. The proposed solution for significantly enhancing high-temperature dimensional stability and thermal insulation provides a great supporting foundation for fabricating high-performance organic aerogels as thermal protection materials in aerospace.
Collapse
Affiliation(s)
- Chun Liu
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang, Jiangxi, 330013, China
- Thermal Control Technology Laboratory of Aircraft in Space Environment, Jiangxi University of Science and Technology, Nanchang, Jiangxi, 330013, China
| | - Mingkang Wang
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang, Jiangxi, 330013, China
- Thermal Control Technology Laboratory of Aircraft in Space Environment, Jiangxi University of Science and Technology, Nanchang, Jiangxi, 330013, China
| | - Jing Wang
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang, Jiangxi, 330013, China
- Thermal Control Technology Laboratory of Aircraft in Space Environment, Jiangxi University of Science and Technology, Nanchang, Jiangxi, 330013, China
| | - Guangyu Xu
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang, Jiangxi, 330013, China
- Thermal Control Technology Laboratory of Aircraft in Space Environment, Jiangxi University of Science and Technology, Nanchang, Jiangxi, 330013, China
| | - Sizhao Zhang
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang, Jiangxi, 330013, China
- Thermal Control Technology Laboratory of Aircraft in Space Environment, Jiangxi University of Science and Technology, Nanchang, Jiangxi, 330013, China
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Feng Ding
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang, Jiangxi, 330013, China
- Thermal Control Technology Laboratory of Aircraft in Space Environment, Jiangxi University of Science and Technology, Nanchang, Jiangxi, 330013, China
| |
Collapse
|
3
|
Song M, Kim Y, Baek DS, Kim HY, Gu DH, Li H, Cunning BV, Yang SE, Heo SH, Lee S, Kim M, Lim JS, Jeong HY, Yoo JW, Joo SH, Ruoff RS, Kim JY, Son JS. 3D microprinting of inorganic porous materials by chemical linking-induced solidification of nanocrystals. Nat Commun 2023; 14:8460. [PMID: 38123571 PMCID: PMC10733400 DOI: 10.1038/s41467-023-44145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Three-dimensional (3D) microprinting is considered a next-generation manufacturing process for the production of microscale components; however, the narrow range of suitable materials, which include mainly polymers, is a critical issue that limits the application of this process to functional inorganic materials. Herein, we develop a generalised microscale 3D printing method for the production of purely inorganic nanocrystal-based porous materials. Our process is designed to solidify all-inorganic nanocrystals via immediate dispersibility control and surface linking-induced interconnection in the nonsolvent linker bath and thereby creates multibranched gel networks. The process works with various inorganic materials, including metals, semiconductors, magnets, oxides, and multi-materials, not requiring organic binders or stereolithographic equipment. Filaments with a diameter of sub-10 μm are printed into designed complex 3D microarchitectures, which exhibit full nanocrystal functionality and high specific surface areas as well as hierarchical porous structures. This approach provides the platform technology for designing functional inorganics-based porous materials.
Collapse
Affiliation(s)
- Minju Song
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yoonkyum Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Du San Baek
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ho Young Kim
- Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Da Hwi Gu
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Haiyang Li
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Gyeongsangbuk-do, 37673, Republic of Korea
| | - Benjamin V Cunning
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Seong Eun Yang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seung Hwae Heo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Gyeongsangbuk-do, 37673, Republic of Korea
| | - Seunghyun Lee
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Minhyuk Kim
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - June Sung Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hu Young Jeong
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jung-Woo Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sang Hoon Joo
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rodney S Ruoff
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jin Young Kim
- Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Jae Sung Son
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Gyeongsangbuk-do, 37673, Republic of Korea.
| |
Collapse
|
4
|
Barrulas RV, Corvo MC. Rheology in Product Development: An Insight into 3D Printing of Hydrogels and Aerogels. Gels 2023; 9:986. [PMID: 38131974 PMCID: PMC10742728 DOI: 10.3390/gels9120986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Rheological characterisation plays a crucial role in developing and optimising advanced materials in the form of hydrogels and aerogels, especially if 3D printing technologies are involved. Applications ranging from tissue engineering to environmental remediation require the fine-tuning of such properties. Nonetheless, their complex rheological behaviour presents unique challenges in additive manufacturing. This review outlines the vital rheological parameters that influence the printability of hydrogel and aerogel inks, emphasising the importance of viscosity, yield stress, and viscoelasticity. Furthermore, the article discusses the latest developments in rheological modifiers and printing techniques that enable precise control over material deposition and resolution in 3D printing. By understanding and manipulating the rheological properties of these materials, researchers can explore new possibilities for applications such as biomedicine or nanotechnology. An optimal 3D printing ink requires strong shear-thinning behaviour for smooth extrusion, forming continuous filaments. Favourable thixotropic properties aid viscosity recovery post-printing, and adequate yield stress and G' are crucial for structural integrity, preventing deformation or collapse in printed objects, and ensuring high-fidelity preservation of shapes. This insight into rheology provides tools for the future of material design and manufacturing in the rapidly evolving field of 3D printing of hydrogels and aerogels.
Collapse
Affiliation(s)
| | - Marta C. Corvo
- i3N|Cenimat, Department of Materials Science (DCM), NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
| |
Collapse
|
5
|
Yang Y, Zhao H, Li Y, Chen Y, Wang Z, Wu W, Hu L, Zhu J. Tuning the Photochromism of Spiropyran in Functionalized Nanoporous Silica Nanoparticles for Dynamic Anticounterfeiting Applications. ACS OMEGA 2023; 8:16459-16470. [PMID: 37179600 PMCID: PMC10173341 DOI: 10.1021/acsomega.3c01604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Here, we report a novel invisible ink with different decay times based on thin films with different molar ratios of spiropyran (SP)/Si, which allows the encryption of messages over time. Nanoporous silica has been found to be an excellent substrate to improve the solid photochromism of spiropyran, but the hydroxyl groups of silica have a serious effect on fade speeds. The density of silanol groups in silica has an influence on the switching behavior of spiropyran molecules, as they stabilize the amphiphilic merocyanine isomers and thus slow down the fading process from the open to the closed form. Here, we investigate the solid photochromic behavior of spiropyran by sol-gel modification of the silanol groups and explore its potential application in UV printing and dynamic anticounterfeiting. To extend its applications, spiropyran is embedded in organically modified thin films prepared by the sol-gel method. Notably, by using the different decay times of thin films with different SP/Si molar ratios, time-dependent information encryption can be realized. It provides an initial "false" code, which does not display the required information, and only after a given time will the encrypted data appear.
Collapse
Affiliation(s)
- Yuhui Yang
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
- Department
of Polymer Materials, Zhejiang Sci-Tech
University, Hangzhou 310018, China
- Institute
of Smart Biomedical Materials, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Huimin Zhao
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Yuqing Li
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Yilong Chen
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Zhaohui Wang
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Wei Wu
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Leilei Hu
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Jiangkun Zhu
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
6
|
Study of Energy Saving Using Silica Aerogel Insulation in a Residential Building. Gels 2023; 9:gels9020086. [PMID: 36826255 PMCID: PMC9957506 DOI: 10.3390/gels9020086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Energy consumption, specifically in the building sector, is expected to rise. One potential way to reduce energy consumption, or to slow this increase, is to reduce the heat loss in residential homes. Silica aerogels have grown in popularity as an insulating material due to their extremely low thermal conductivity. However, the benefits of using silica aerogels as an insulator in residential buildings have not been thoroughly studied. To understand the benefits of using silica aerogels as a thermal insulator in residential homes, experimentally validated simulations were performed. The simulations were performed on a model of a full-scale residential house using the multiphysics software ANSYS FLUENT 2019 R2. The simulations helped predict the actual saving benefits of using aerogels as an insulator. Aerogels have the potential to be used as an insulator in both the walls and windows due to its semitransparency. The results showed that the average kWh savings using one half-inch layer of wall aerogel insulation coupled with window aerogel insulation was 20.9% for the single-family house compared to traditional insulation. On average, the energy lost through the windows was 39.1% lower when using aerogel insulation compared to standard insulating materials. The energy lost through the house walls was 13.3% lower on average when using a thin layer of aerogel insulation. While a thin layer of aerogel insulation provided a benefit when used in the house walls, the potential for savings per quantity used was greater in the windows.
Collapse
|
7
|
Preparation and Properties of Highly Transparent SiO2 Aerogels for Thermal Insulation. Gels 2022; 8:gels8110744. [DOI: 10.3390/gels8110744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
SiO2 aerogels have attracted extensive attention due to their unique structural characteristics, which exhibit many special properties, especially good optical transparency. As far as we know, the sol-gel stage during the synthesis of aerogel plays an important role in the construction of the gel skeleton. In this study, we adjusted the amount of silicon source and catalyst to explore the best scheme for preparing highly transparent SiO2 aerogels, and further clarify the effects of both on the properties of SiO2 aerogels. Results indicated that the pore size distribution was between 10 and 20 nm, the thermal conductivity was between 0.0135 and 0.021 W/(m·K), and the transmittance reached 97.78% at 800 nm of the aerogels, better than most studies. Therefore, it has the potential to be used in aerogel glass for thermal insulation.
Collapse
|
8
|
Zhang J, Yin B, Liu W, Liu X, Lian W, Tang S. Lightweight and hydrophobic silica-cellulose composite aerogel based on interpenetrating networks. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Fiber of bioinspired columnar cactus prickle-like structure for reinforced SiC aerogel: Thermal insulation and mechanical properties. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.06.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Lv Y, He F, Ding R, Wu N, Liu T, Wang J. Design of the Thermal Restructured Carbon-Inorganic Composite Aerogel for Efficient Thermal Protection of Aero-Engines. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38185-38195. [PMID: 35968575 DOI: 10.1021/acsami.2c09891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The heat insulation ability and thermal stability of thermal protection materials play extremely important role in the thermal protection of aero-engines under high temperature. Herein, we design the carbon-SiO2-Al2O3 (CSA) composite aerogel through thermochemical restructuring from the phenol-formaldehyde resin-SiO2-Al2O3 (PSA) composite aerogel. This thermochemical restructured aerogel not only shows better adhesion property under room temperature but also possesses higher thermal stability and desirable heat insulation ability under high temperature. Taking the PSA-0.5 composite aerogel as an example, the compressive strain-stress test unveils that it can be compressed by 66% without catastrophic collapse, which is beneficial for the adhesion with the metallic matrix. Meanwhile, the transmission electron microscopy and scanning electron microscopy images exhibit the unbroken three-dimensional structure for the CSA-0.5 composite aerogel, which confirmed the structural stability of the composite aerogel after thermochemical restructuring. The thermal cycle test indicates that the weight loss of the CSA-0.5 composite aerogel is only ca. 8%, firmly confirming its thermal stability. Importantly, the thermal conductivity of the CSA-0.5 composite aerogel ranges from 0.024 to 0.083 W m-1 K-1, indicating the superior performance of heat insulation. Moreover, the numerical simulation is carried out to validate the thermal protection effect of the CSA-0.5 composite aerogel as a thermal protection layer. Together with laminated cooling, it could enhance the surface cooling effectiveness of the metallic matrix to above 0.8. Briefly, this work paves a new pathway for efficient thermal protection materials of aero-engines via the rational design of the thermochemical restructured composite aerogel under the guidance of ANSYS numerical simulations.
Collapse
Affiliation(s)
- Yumei Lv
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Fei He
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Rui Ding
- Northwest Institute of Nuclear Technology, Xi'an 710024, China
| | - Nan Wu
- School of Mechatronic Engineering and Automation, Foshan University, Foshan 528000, China
| | - Taolue Liu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Jianhua Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
11
|
Interparticle photo-cross-linkable Pickering emulsions for rapid manufacturing of complex-structured porous ceramic materials. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Ji C, Zhu S, Zhang E, Li W, Liu Y, Zhang W, Su C, Gu Z, Zhang H. Research progress and applications of silica-based aerogels - a bibliometric analysis. RSC Adv 2022; 12:14137-14153. [PMID: 35558845 PMCID: PMC9092642 DOI: 10.1039/d2ra01511k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
Silica aerogels are three-dimensional porous materials that were initially produced in 1931. During the past nearly 90 years, silica aerogels have been applied extensively in many fields. In order to grasp the progress of silica-based aerogels, we utilize bibliometrics and visualization methods to analyze the research hotspots and the application of this important field. Firstly, we collect all the publications on silica-based aerogels and then analyze their research trends and performances by a bibliometric method regarding publication year/citation, country/institute, journals, and keywords. Following this, the major research hotspots of this area with a focus on synthesis, mechanical property regulation, and the applications for thermal insulation, adsorption, and Cherenkov detector radiators are identified and reviewed. Finally, current challenges and directions in the future regarding silica-based aerogels are also proposed.
Collapse
Affiliation(s)
- Chao Ji
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology Qingdao 266590 China
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences Beijing 100049 China
| | - Shuang Zhu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences Beijing 100049 China
| | - Enshuang Zhang
- Aerospace Institute of Advanced Material & Processing Technology Beijing 100074 P. R. China
| | - Wenjing Li
- Aerospace Institute of Advanced Material & Processing Technology Beijing 100074 P. R. China
| | - Yuanyuan Liu
- Aerospace Institute of Advanced Material & Processing Technology Beijing 100074 P. R. China
| | - Wanlin Zhang
- Aerospace Institute of Advanced Material & Processing Technology Beijing 100074 P. R. China
| | - Chunjian Su
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology Qingdao 266590 China
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Zhang
- Aerospace Institute of Advanced Material & Processing Technology Beijing 100074 P. R. China
| |
Collapse
|
13
|
Wang L, Feng J, Luo Y, Jiang Y, Zhang G, Feng J. Versatile Thermal-Solidifying Direct-Write Assembly towards Heat-Resistant 3D-Printed Ceramic Aerogels for Thermal Insulation. SMALL METHODS 2022; 6:e2200045. [PMID: 35344287 DOI: 10.1002/smtd.202200045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Ceramic aerogels have great potential in the areas of thermal insulation, catalysis, filtration, environmental remediation, energy storage, etc. However, the conventional shaping and post-processing of ceramic aerogels are plagued by their brittleness due to the inefficient neck connection of oxide ceramic nanoparticles. Here a versatile thermal-solidifying direct-ink-writing has been proposed for fabricating heat-resistant ceramic aerogels. The versatility lies in the good compatibility and designability of ceramic inks, which makes it possible to print silica aerogels, alumina-silica aerogels, and titania-silica aerogels. 3D-printed ceramic aerogels show excellent high-temperature stability up to 1000 °C in air (linear shrinkage less than 5%) when compared to conventional silica aerogels. This improved heat resistance is attributed to the existence of a refractory fumed silica phase, which restrains the microstructure destruction of ceramic aerogels in high-temperature environments. Benefiting from low density (0.21 g cm-3 ), high surface area (284 m2 g-1 ), and well-distributed mesopores, 3D-printed ceramic aerogels possess a low thermal conductivity (30.87 mW m-1 K-1 ) and are considered as ideal thermal insulators. The combination of ceramic aerogels with 3D printing technology would open up new opportunities to tailor the geometry of porous materials for specific applications.
Collapse
Affiliation(s)
- Lukai Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, P. R. China
| | - Junzong Feng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, P. R. China
| | - Yi Luo
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, P. R. China
| | - Yonggang Jiang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, P. R. China
| | - Guojie Zhang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, P. R. China
| | - Jian Feng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, P. R. China
| |
Collapse
|
14
|
Guo P, Su L, Peng K, Lu D, Xu L, Li M, Wang H. Additive Manufacturing of Resilient SiC Nanowire Aerogels. ACS NANO 2022; 16:6625-6633. [PMID: 35404589 DOI: 10.1021/acsnano.2c01039] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Resilient ceramic aerogels are emerging as a fascinating material that features light weight, low thermal conductivity, and recoverable compressibility, promising widespread prospects in the fields of heat insulation, catalysis, filtration, and aerospace exploration. However, the construction of the resilient ceramic aerogels with rational designed multiscale architectures aiming for tunable physical and mechanical performances remains a major challenge. Here, 3D constructed resilient SiC nanowire aerogels possessing programmed geometries and engineered mechanical properties are created via additive manufacturing. The Young's modulus of the fabricated SiC nanowire aerogel lattices are tuned systematically from 0.012 MPa to 5.800 MPa spanning over 2 orders of magnitude. More importantly, the customized lightweight and resilient SiC nanowire aerogels show a low thermal conductivity (0.046 W m-1 K-1). The present work provides another approach to the design and rapid fabrication of resilient ceramic aerogels toward flexible thermal management devices, lightweight engineered structures, and other potential applications.
Collapse
Affiliation(s)
- Pengfei Guo
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Su
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kang Peng
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - De Lu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Liang Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingzhu Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongjie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
15
|
Hu Y, Yang G, Zhou J, Li H, Shi L, Xu X, Cheng B, Zhuang X. Proton Donor-Regulated Mechanically Robust Aramid Nanofiber Aerogel Membranes for High-Temperature Thermal Insulation. ACS NANO 2022; 16:5984-5993. [PMID: 35293718 DOI: 10.1021/acsnano.1c11301] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-performance thermal insulators are urgently desired for energy-saving and thermal protection applications. However, the creation of such materials with synchronously ultralow thermal conductivity, lightweight, and mechanically robust properties still faces enormous challenges. Herein, a proton donor-regulated assembly strategy is presented to construct asymmetric aramid nanofiber (ANF) aerogel membranes with a dense skin layer and a high-porous nanofibrous body part. The asymmetric structure originates from the otherness of the structural restoration of deprotonated ANFs and the resulting ANF assembly due to the diversity of available proton concentrations. Befitting from the synergistic effect of the distinct architectures, the resulting aerogel membranes exhibit excellent overall performance in terms of a low thermal conductivity of 0.031 W·m-1·K-1, a low density of 19.2 mg·cm-3, a high porosity of 99.53%, a high tensile strength of 11.8 MPa (16.5 times enhanced), high heat resistance (>500 °C), and high flame retardancy. Furthermore, a blade-scraping process is further proposed to fabricate the aerogel membrane in a continuous and scalable manner, as it is believed to have potential applications in civil and military fields.
Collapse
Affiliation(s)
- Yinghe Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Guang Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jintao Zhou
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Heyi Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Lei Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xianlin Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Bowen Cheng
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300222, China
| | - Xupin Zhuang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|