1
|
Nawarathne CP, Strong N, Alvarez NT. Chemically Bonded Carbon Nanotubes to Au Films for Robust High-Performance Electrochemical Double-Layer Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39977861 DOI: 10.1021/acsami.4c19859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
As energy storage devices, electrochemical double-layer capacitors (EDLCs) are a potential alternative to traditional batteries owing to their higher charge-discharge capability, higher power density, and longer life span; however, EDLCs typically lack energy density. Carbon nanotubes (CNTs), which have a high surface area and excellent conductivity, are promising for improving the energy density in EDLCs. In this study, an innovative approach was adopted to fabricate CNT-metal electrodes, in which chemical bonds between vertically aligned carbon nanotubes (VACNTs) and Au metal were formed via a linker molecule, resulting in robust, highly electrically conductive CNT-Au bonds without compromising the free-standing nature and quality of the VACNT array. Specifically, VACNT arrays prepared through chemical vapor deposition on an Al2O3/Si substrate were transferred onto Au metal while maintaining their free-standing arrangement. The average resistance at the CNT-Au interface was 0.5 kΩ over an area of 1 nm2, as measured using an atomic force microscopy-based technique. Supercapacitors fabricated using the prepared VACNT-Au electrodes had a specific capacitance of 50 mF cm-2 (9.5 F g-1), thereby outperforming most pure VACNT-based EDLCs. Moreover, these devices exhibited outstanding stability, with 74% capacitance retention after 100,000 charge-discharge cycles.
Collapse
Affiliation(s)
- Chaminda P Nawarathne
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Nathan Strong
- Department of Chemical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Noe T Alvarez
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
2
|
Vessally E, Rzayev RM, Niyazova AA, Aggarwal T, Rahimova KE. Overview of recent developments in carbon-based nanocomposites for supercapacitor applications. RSC Adv 2024; 14:40141-40159. [PMID: 39717808 PMCID: PMC11664245 DOI: 10.1039/d4ra08446b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
Energy storage devices are recognized as environmentally friendly technologies. Supercapacitors, known for their high cycle stability, have been proposed as potential alternatives to fossil fuels. Recent studies have focused on selecting suitable electrode materials to achieve energy storage systems with high stability, high specific capacity, and biocompatibility. In particular, carbon-based electrode materials, such as graphene oxide, activated carbon, carbon nanotubes, and carbon-based quantum dots, have attracted considerable attention due to their intrinsic properties, such as high conductivity and stability. However, carbon materials alone exhibit limitations, such as low energy density and low specific capacitance. To address this limitation, the synergistic effect of carbon materials has been combined with other electroactive materials to develop electrode materials with enhanced supercapacitor properties. The present study also investigates the supercapacitor performance of carbon-based nanocomposites. It examines the effect of each carbon material (AC, CNT, GO, rGO) on improving the performance of other electroactive materials, including metal oxides, metal sulfides, MXenes, MOFs, and conductive polymers. This study provides valuable insights for further studies on carbon-based electrode materials for supercapacitor applications.
Collapse
Affiliation(s)
- Esmail Vessally
- Department of Chemistry, Payame Noor University Tehran Iran
- Composite Materials Scientific Research Center of Azerbaijan State University of Economics (UNEC) 194 M. Mukhtarov str. Baku Azerbaijan
| | - Rovnag M Rzayev
- Composite Materials Scientific Research Center of Azerbaijan State University of Economics (UNEC) 194 M. Mukhtarov str. Baku Azerbaijan
| | - Aytan A Niyazova
- Composite Materials Scientific Research Center of Azerbaijan State University of Economics (UNEC) 194 M. Mukhtarov str. Baku Azerbaijan
| | - Tushar Aggarwal
- Centre for Research Impact & Outcome, Institute of Engineering and Technology, Chitkara University Rajpura 140401 Punjab India
| | - Konul E Rahimova
- Composite Materials Scientific Research Center of Azerbaijan State University of Economics (UNEC) 194 M. Mukhtarov str. Baku Azerbaijan
| |
Collapse
|
3
|
Chung HY, Chang HM, Wang CP. Manganese Oxide-Doped Hierarchical Porous Carbon Derived from Tea Leaf Waste for High-Performance Supercapacitors. Int J Mol Sci 2024; 25:10884. [PMID: 39456667 PMCID: PMC11508140 DOI: 10.3390/ijms252010884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Hierarchical porous carbon derived from discarded biomass for energy storage materials has attracted increasing research attention due to its cost-effectiveness, ease of fabrication, environmental protection, and sustainability. Brewed tea leaves are rich in heteroatoms that are beneficial to capacitive energy storage behavior. Therefore, we synthesized high electrochemical performance carbon-based composites from Tie guan yin tea leaf waste using a facile procedure comprising hydrothermal, chemical activation, and calcination processes. In particular, potassium permanganate (KMnO4) was incorporated into the potassium hydroxide (KOH) activation agent; therefore, during the activation process, KOH continued to erode the biomass precursor, producing abundant pores, and KMnO4 synchronously underwent a redox reaction to form MnO nanoparticles and anchor on the porous carbon through chemical bonding. MnO nanoparticles provided additional pseudocapacitive charge storage capabilities through redox reactions. The results show that the amount of MnO produced is proportional to the amount of KMnO4 incorporated. However, the specific surface area of the composite material decreases with the incorporated amount of KMnO4 due to the accumulation and aggregation of MnO nanoparticles, thereby even blocking some micropores. Optimization of MnO nanocrystal loading can promote the crystallinity and graphitization degree of carbonaceous materials. The specimen prepared with a weight ratio of KMnO4 to hydrochar of 0.02 exhibited a high capacitance of 337 F/g, an increase of 70%, owing to the synergistic effect between the Tie guan yin tea leaf-derived activated carbon and MnO nanoparticles. With this facile preparation method and the resulting high electrochemical performance, the development of manganese oxide/carbon composites derived from tea leaf biomass is expected to become a promising candidate as an energy storage material for supercapacitors.
Collapse
Affiliation(s)
- Hsiu-Ying Chung
- Institute of Precision Electronic Components, College of Semiconductor and Advanced Technology Research, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | | | | |
Collapse
|
4
|
Oh M, Seo H, Choi J, Noh JH, Kim J, Jeon J, Choi C. Transition of Carbon Nanotube Sheets from Hydrophobicity to Hydrophilicity by Facile Electrochemical Wetting. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2834. [PMID: 37947680 PMCID: PMC10650619 DOI: 10.3390/nano13212834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
The present study delves into the transformative effects of electrochemical oxidation on the hydrophobic-to-hydrophilic transition of carbon nanotube (CNT) sheets. The paper elucidates the inherent advantages of CNT sheets, such as high electrical conductivity and mechanical strength, and contrasts them with the limitations posed by their hydrophobic nature. A comprehensive investigation is conducted to demonstrate the efficacy of electrochemical oxidation treatment in modifying the surface properties of CNT sheets, thereby making them hydrophilic. The study reveals that the treatment not only is cost-effective and time-efficient compared to traditional plasma treatment methods but also results in a significant decrease in water contact angle. Mechanistic insights into the hydrophilic transition are provided, emphasizing the role of oxygen-containing functional groups introduced during the electrochemical oxidation process.
Collapse
Affiliation(s)
- Myoungeun Oh
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea; (M.O.); (H.S.); (J.C.); (J.H.N.); (J.K.)
- Department of Advanced Battery Convergence Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Hyunji Seo
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea; (M.O.); (H.S.); (J.C.); (J.H.N.); (J.K.)
| | - Jimin Choi
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea; (M.O.); (H.S.); (J.C.); (J.H.N.); (J.K.)
| | - Jun Ho Noh
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea; (M.O.); (H.S.); (J.C.); (J.H.N.); (J.K.)
- Department of Advanced Battery Convergence Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Juwan Kim
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea; (M.O.); (H.S.); (J.C.); (J.H.N.); (J.K.)
- Department of Advanced Battery Convergence Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Joonhyeon Jeon
- Department of Advanced Battery Convergence Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea
- Division of Electronics & Electronical Engineering, Dongguk University–Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Changsoon Choi
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea; (M.O.); (H.S.); (J.C.); (J.H.N.); (J.K.)
- Department of Advanced Battery Convergence Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| |
Collapse
|
5
|
Ahmad A, Gondal MA, Hassan M, Iqbal R, Ullah S, Alzahrani AS, Memon WA, Mabood F, Melhi S. Preparation and Characterization of Physically Activated Carbon and Its Energetic Application for All-Solid-State Supercapacitors: A Case Study. ACS OMEGA 2023; 8:21653-21663. [PMID: 37360487 PMCID: PMC10286292 DOI: 10.1021/acsomega.3c01065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Biomass-derived activated carbons have gained significant attention as electrode materials for supercapacitors (SCs) due to their renewability, low-cost, and ready availability. In this work, we have derived physically activated carbon from date seed biomass as symmetric electrodes and PVA/KOH has been used as a gel polymer electrolyte for all-solid-state SCs. Initially, the date seed biomass was carbonized at 600 °C (C-600) and then it was used to obtain physically activated carbon through CO2 activation at 850 °C (C-850). The SEM and TEM images of C-850 displayed its porous, flaky, and multilayer type morphologies. The fabricated electrodes from C-850 with PVA/KOH electrolytes showed the best electrochemical performances in SCs (Lu et al. Energy Environ. Sci., 2014, 7, 2160) application. Cyclic voltammetry was performed from 5 to 100 mV s-1, illustrating an electric double layer behavior. The C-850 electrode delivered a specific capacitance of 138.12 F g-1 at 5 mV s-1, whereas it retained 16 F g-1 capacitance at 100 mV s-1. Our assembled all-solid-state SCs exhibit an energy density of 9.6 Wh kg-1 with a power density of 87.86 W kg-1. The internal and charge transfer resistances of the assembled SCs were 0.54 and 17.86 Ω, respectively. These innovative findings provide a universal and KOH-free activation process for the synthesis of physically activated carbon for all solid-state SCs applications.
Collapse
Affiliation(s)
- Aziz Ahmad
- Interdisciplinary
Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals,
KFUPM, Box 5040, Dhahran 31261, Saudi Arabia
| | - Mohammed Ashraf Gondal
- Laser
Research Group, Physics Department and IRC-Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals,
KFUPM, Box 5047, Dhahran 31261, Saudi Arabia
- K.A.CARE
Energy Research & Innovation Center (ERIC), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Muhammad Hassan
- Laser
Research Group, Physics Department and IRC-Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals,
KFUPM, Box 5047, Dhahran 31261, Saudi Arabia
| | - Rashid Iqbal
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Sami Ullah
- K.A.CARE
Energy Research & Innovation Center (ERIC), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Atif Saeed Alzahrani
- Interdisciplinary
Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals,
KFUPM, Box 5040, Dhahran 31261, Saudi Arabia
| | - Waqar Ali Memon
- Chinese
Academy of Sciences, National Center for Nanoscience and Technology, Beiyitiao No. 11, Zhongguancun, Beijing 100190, China
| | - Fazal Mabood
- Institute
of Chemical Sciences, University of Swat, Charbagh, KP 19120, Pakistan
| | - Saad Melhi
- Department
of Chemistry, College of Science, University
of Bisha, Bisha 61922, Saudi Arabia
| |
Collapse
|
6
|
Mian MM, Kamana IML, An X, Abbas SC, Ahommed MS, He Z, Ni Y. Cellulose nanofibers as effective binders for activated biochar-derived high-performance supercapacitors. Carbohydr Polym 2022; 301:120353. [DOI: 10.1016/j.carbpol.2022.120353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
|