1
|
Eom W, Hossain MT, Parasramka V, Kim J, Siu RWY, Sanders KA, Piorkowski D, Lowe A, Koh HG, De Volder MFL, Fudge DS, Ewoldt RH, Tawfick SH. Fast 3D printing of fine, continuous, and soft fibers via embedded solvent exchange. Nat Commun 2025; 16:842. [PMID: 39833187 PMCID: PMC11746892 DOI: 10.1038/s41467-025-55972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Nature uses fibrous structures for sensing and structural functions as observed in hairs, whiskers, stereocilia, spider silks, and hagfish slime thread skeins. Here, we demonstrate multi-nozzle printing of 3D hair arrays having freeform trajectories at a very high rate, with fiber diameters as fine as 1.5 µm, continuous lengths reaching tens of centimeters, and a wide range of materials with elastic moduli from 5 MPa to 3500 MPa. This is achieved via 3D printing by rapid solvent exchange in high yield stress micro granular gel, leading to radial solidification of the extruded polymer filament at a rate of 2.33 μm/s. This process extrudes filaments at 5 mm/s, which is 500,000 times faster than meniscus printing owing to the rapid solidification which prevents capillarity-induced fiber breakage. This study demonstrates the potential of 3D printing by rapid solvent exchange as a fast and scalable process for replicating natural fibrous structures for use in biomimetic functions.
Collapse
Affiliation(s)
- Wonsik Eom
- Department of Fiber Convergence Material Engineering, Dankook University, Yongin-si, Republic of Korea
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Mohammad Tanver Hossain
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Vidush Parasramka
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jeongmin Kim
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ryan W Y Siu
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Kate A Sanders
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Dakota Piorkowski
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Andrew Lowe
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Hyun Gi Koh
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | | | - Douglas S Fudge
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Randy H Ewoldt
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sameh H Tawfick
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Engineering, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Xin Y, Zhou X, Bark H, Lee PS. The Role of 3D Printing Technologies in Soft Grippers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307963. [PMID: 37971199 DOI: 10.1002/adma.202307963] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Indexed: 11/19/2023]
Abstract
Soft grippers are essential for precise and gentle handling of delicate, fragile, and easy-to-break objects, such as glassware, electronic components, food items, and biological samples, without causing any damage or deformation. This is especially important in industries such as healthcare, manufacturing, agriculture, food handling, and biomedical, where accuracy, safety, and preservation of the objects being handled are critical. This article reviews the use of 3D printing technologies in soft grippers, including those made of functional materials, nonfunctional materials, and those with sensors. 3D printing processes that can be used to fabricate each class of soft grippers are discussed. Available 3D printing technologies that are often used in soft grippers are primarily extrusion-based printing (fused deposition modeling and direct ink writing), jet-based printing (polymer jet), and immersion printing (stereolithography and digital light processing). The materials selected for fabricating soft grippers include thermoplastic polymers, UV-curable polymers, polymer gels, soft conductive composites, and hydrogels. It is conclude that 3D printing technologies revolutionize the way soft grippers are being fabricated, expanding their application domains and reducing the difficulties in customization, fabrication, and production.
Collapse
Affiliation(s)
- Yangyang Xin
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Xinran Zhou
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Hyunwoo Bark
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| |
Collapse
|
3
|
Yao DR, Kim I, Yin S, Gao W. Multimodal Soft Robotic Actuation and Locomotion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308829. [PMID: 38305065 DOI: 10.1002/adma.202308829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Diverse and adaptable modes of complex motion observed at different scales in living creatures are challenging to reproduce in robotic systems. Achieving dexterous movement in conventional robots can be difficult due to the many limitations of applying rigid materials. Robots based on soft materials are inherently deformable, compliant, adaptable, and adjustable, making soft robotics conducive to creating machines with complicated actuation and motion gaits. This review examines the mechanisms and modalities of actuation deformation in materials that respond to various stimuli. Then, strategies based on composite materials are considered to build toward actuators that combine multiple actuation modes for sophisticated movements. Examples across literature illustrate the development of soft actuators as free-moving, entirely soft-bodied robots with multiple locomotion gaits via careful manipulation of external stimuli. The review further highlights how the application of soft functional materials into robots with rigid components further enhances their locomotive abilities. Finally, taking advantage of the shape-morphing properties of soft materials, reconfigurable soft robots have shown the capacity for adaptive gaits that enable transition across environments with different locomotive modes for optimal efficiency. Overall, soft materials enable varied multimodal motion in actuators and robots, positioning soft robotics to make real-world applications for intricate and challenging tasks.
Collapse
Affiliation(s)
- Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Inho Kim
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
4
|
Liu W, Lei Z, Xing W, Xiong J, Zhang Y, Tao P, Shang W, Fu B, Song C, Deng T. Enable Multi-Stimuli-Responsive Biomimetic Actuation with Asymmetric Design of Graphene-Conjugated Conductive Polymer Gradient Film. ACS NANO 2023; 17:16123-16134. [PMID: 37565780 DOI: 10.1021/acsnano.3c05078] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
In this paper, multiresponsive actuators based on asymmetric design of graphene-conjugated poly(3,4-ethylene dioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) gradient films have been developed by a simple drop casting method. The biomimetic actuation is attributed to the hygroscopic expansion property of PEDOT:PSS and the gradient distribution of graphene sheets within the film, which resembles the hierarchical swelling tissues of some plants in nature. Graphene-conjugated PEDOT:PSS (GCP) actuators exhibit reversible bending behavior under multistimuli such as moisture, organic vapor, electrothermal, and photothermal heating. Noticeably, the bending curvature reaches 2.15 cm-1 under applied voltage as low as 1.5 V owing to the high electrical conductivity of GCP actuator. To mimic the motions of nyctinastic plants, a GCP artificial flower that spreads its petals under sunlight illumination has been fabricated. GCP actuators have been also demonstrated as intelligent light-controlled switches for light-emitting diodes and smart curtains for thermal management. Not only do the GCP gradient films exhibit potential applications in flexible electronics and energy harvesting/storage devices but also the facile fabrication of multiresponsive GCP actuators may shed light on the development of soft robotics, artificial muscles, wearable electronics, and smart sensors.
Collapse
Affiliation(s)
- Wendong Liu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
- Materials Genome Initiative Center, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Zhihui Lei
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Wenkui Xing
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Jiacheng Xiong
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Yingyue Zhang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Peng Tao
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Wen Shang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Benwei Fu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Chengyi Song
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
- Materials Genome Initiative Center, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Tao Deng
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
- Materials Genome Initiative Center, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| |
Collapse
|
5
|
Cao P, Yang J, Gong J, Tao L, Wang T, Ju J, Zhou Y, Wang Q, Zhang Y. 4D
printing of bilayer tubular structure with dual‐stimuli responsive based on self‐rolling behavior. J Appl Polym Sci 2022. [DOI: 10.1002/app.53241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pengrui Cao
- Key Laboratory of Science and Technology on Wear and Protection of Materials Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Jing Yang
- Key Laboratory of Science and Technology on Wear and Protection of Materials Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Yantai People's Republic of China
| | - Junhui Gong
- Key Laboratory of Science and Technology on Wear and Protection of Materials Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Liming Tao
- Key Laboratory of Science and Technology on Wear and Protection of Materials Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Tingmei Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Junping Ju
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles Qingdao University Qingdao People's Republic of China
| | - Yanyi Zhou
- Key Laboratory of Science and Technology on Wear and Protection of Materials Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
| | - Qihua Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Yaoming Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing People's Republic of China
| |
Collapse
|
6
|
Cao G, Cai S, Chen Y, Zhou D, Zhang H, Tian Y. Facile synthesis of highly conductive and dispersible PEDOT particles. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Yan X, Chen Q, Huo Z, Zhang N, Ma M. Programmable Multistimuli-Responsive and Multimodal Polymer Actuator Based on a Designed Energy Transduction Network. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13768-13777. [PMID: 35262326 DOI: 10.1021/acsami.2c01549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A polymer actuator typically responds to only one or two types of stimuli, where sensing and actuation are simultaneously exerted by the same responsive polymer. In cells, sensing and actuation are exerted separately by different biomolecules, which are integrated into nanoscale assemblies to construct the signaling network, making cells a multistimuli responsive and multimodal system. Inspired by the structure-function relationship of the signaling network in cells, we have developed a strategy to select and assemble proper functional polymers into assemblies, where sensing and actuation are exerted by different polymers, and the assemblies can present novel functions beyond that of each polymer component. Three polymers [polyaniline, PANi; poly(N-isopropylacrylamide), PNIPAm; and polydimethylsiloxane, PDMS] are integrated as nodes into a simple energy transduction network, which can be regulated by three molecular factors (pH, kosmotropic anions, and polyethylene glycol). PANi converts the light or electric stimulus into heat, which triggers the actuation of PNIPAm and PDMS. Relying on this energy transduction network, the polymer assembly can respond to six types of stimuli (light, electricity, temperature, water, ions, and organic solvents) and perform different actuation modes, serving as a powerful actuator. Programmable complex deformation upon multiple simultaneous or sequential stimuli has also been achieved by this actuator. An adaptive gripper to catch thin objects and a self-regulating switch to maintain environmental humidity illustrate the wide potential of this actuator for next-generation smart materials and soft robots.
Collapse
Affiliation(s)
- Xiunan Yan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qing Chen
- Deutsches Elektronen-Synchrotron, Hamburg 22607, Germany
| | - Ziyu Huo
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ning Zhang
- School of Biology, Food and Environment, Hefei University, Hefei, Anhui 230601, China
| | - Mingming Ma
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|