1
|
Lu W, Jiang Y, Yao X, Yu Y, Shen W, Yang M, Huang X, Tang X. Dispersive Pd islands-deposited Au nanorods for in situ SERS monitoring of catalytic reaction. RSC Adv 2025; 15:6663-6667. [PMID: 40017638 PMCID: PMC11867055 DOI: 10.1039/d5ra01059d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
In this study, a bifunctional material with SERS effect and catalytic performance is fabricated in which dispersive Pd islands are deposited on the surface of gold nonorods (AuNR@Pd islands) with the confined modification of surface active sites of AuNRs using 5-iodo salicylic acid (5-ISA), which optimize the performance of bifunctional materials.
Collapse
Affiliation(s)
- Wenjing Lu
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- University of Science and Technology of China Hefei 230026 China
| | - Yurui Jiang
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Xiaobin Yao
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| | - Yan Yu
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Wei Shen
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- Institute of Environmental Hefei Comprehensive National Science Center Hefei 230088 China
| | - Meng Yang
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- University of Science and Technology of China Hefei 230026 China
- Institute of Environmental Hefei Comprehensive National Science Center Hefei 230088 China
| | - Xingjiu Huang
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- University of Science and Technology of China Hefei 230026 China
- Institute of Environmental Hefei Comprehensive National Science Center Hefei 230088 China
| | - Xianghu Tang
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- University of Science and Technology of China Hefei 230026 China
- Institute of Environmental Hefei Comprehensive National Science Center Hefei 230088 China
| |
Collapse
|
2
|
Kou H, Shao T, Dong J, Zhang F, Tian S, Wang X. Highly Sensitive Ethylene Glycol Gas Sensor Based on MIL-68(In)@ZIF-8 Derivative. ACS Sens 2024; 9:6580-6591. [PMID: 39639526 DOI: 10.1021/acssensors.4c02087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Ethylene glycol, as a colorless and tasteless organic compound, is an important industrial raw material but can be hazardous to the environment and human health. Thus, the development of high-performance sensing materials is required for the monitoring of ethylene glycol. In this paper, a method to synthesize In2O3@ZnO using MIL-68(In)@ZIF-8 to serve as a sacrificial template is proposed for testing ethylene glycol sensing capabilities. For verifying an effective improvement in gas-sensitive performance by bimetallic organic skeleton (MOF) synthesized heterojunctions, we performed gas-sensitive tests on In2O3, ZnO, and In2O3@ZnO. In2O3@ZnO has the best sensitivity to ethylene glycol, including ultrahigh response value (20 ppm-200.12), moderate response/recovery time (53/50 s), and excellent selectivity. The construction of heterojunction is the main reason for enhancing the ethylene glycol response of the sensor. On this basis, the gas-sensitive enhancement mechanism of composites is analyzed. The results show that the design method of synthesizing heterojunctions using bis-MOFs proposes a new approach that enhances the properties of ethylene glycol.
Collapse
Affiliation(s)
- Huirong Kou
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Tingting Shao
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Juntang Dong
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Fuchun Zhang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Shuwei Tian
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Xiaoyang Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| |
Collapse
|
3
|
Swager TM, Pioch TN, Feng H, Bergman HM, Luo SXL, Valenza JJ. Critical Sensing Modalities for Hydrogen: Technical Needs and Status of the Field to Support a Changing Energy Landscape. ACS Sens 2024; 9:2205-2227. [PMID: 38738834 DOI: 10.1021/acssensors.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Decarbonization of the energy system is a key aspect of the energy transition. Energy storage in the form of chemical bonds has long been viewed as an optimal scheme for energy conversion. With advances in systems engineering, hydrogen has the potential to become a low cost, low emission, energy carrier. However, hydrogen is difficult to contain, it exhibits a low flammability limit (>40000 ppm or 4%), low ignition energy (0.02 mJ), and it is a short-lived climate forcer. Beyond commercially available sensors to ensure safety through spot checks in enclosed environments, new sensors are necessary to support the development of low emission infrastructure for production, transmission, storage, and end use. Efficient scalable broad area hydrogen monitoring motivates lowering the detection limit below that (10 ppm) of best in class commercial technologies. In this perspective, we evaluate recent advances in hydrogen gas sensing to highlight technologies that may find broad utility in the hydrogen sector. It is clear in the near term that a sensor technology suite is required to meet the variable constraints (e.g., power, size/weight, connectivity, cost) that characterize the breadth of the application space, ranging from industrial complexes to remote pipelines. This perspective is not intended to be another standard hydrogen sensor review, but rather provide a critical evaluation of technologies with detection limits preferably below 1 ppm and low power requirements. Given projections for rapid market growth, promising techniques will also be amenable to rapid development in technical readiness for commercial deployment. As such, methods that do not meet these requirements will not be considered in depth.
Collapse
Affiliation(s)
- Timothy M Swager
- Massachusetts Institute of Technology, Chemistry Department, Cambridge, Massachusetts 02139 United States
| | - Thomas N Pioch
- Massachusetts Institute of Technology, Chemistry Department, Cambridge, Massachusetts 02139 United States
| | - Haosheng Feng
- Massachusetts Institute of Technology, Chemistry Department, Cambridge, Massachusetts 02139 United States
| | - Harrison M Bergman
- Massachusetts Institute of Technology, Chemistry Department, Cambridge, Massachusetts 02139 United States
| | - Shao-Xiong Lennon Luo
- Massachusetts Institute of Technology, Chemistry Department, Cambridge, Massachusetts 02139 United States
| | - John J Valenza
- Research Division, ExxonMobil Technology and Engineering Company, Annandale, New Jersey 08801 United States
| |
Collapse
|
4
|
Yang XY, Zhao ZG, Yue LJ, Xie KF, Jin GX, Fang SM, Zhang YH. Pd Decoration with Synergistic High Oxygen Mobility Boosts Hydrogen Sensing Performance at Low Working Temperature on WO 3 Nanosheet. ACS Sens 2023; 8:4293-4306. [PMID: 37946460 DOI: 10.1021/acssensors.3c01659] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Pd-based materials have received remarkable attention and exhibit excellent H2 sensing performance due to their superior hydrogen storage and catalysis behavior. However, the synergistic effects originated from the decoration of Pd on a metal oxide support to boost the sensing performance are ambiguous, and the deep investigation of metal support interaction (MSI) on the H2 sensing mechanism is still unclear. Here, the model material of Pd nanoparticle-decorated WO3 nanosheet is synthesized, and individual fine structures can be achieved by treating it at different temperatures. Notably, the Pd-WO3-300 materials display superior H2 sensing performance at a low working temperature (110 °C), with a superior sensing response (Ra/Rg = 40.63 to 10 ppm), high sensing selectivity, and anti-interference ability. DFT calculations and detailed structural investigations confirm that the moderate MSI facilitates the generation of high mobility surface O2- (ad) species and a proper ratio of surface Pd0-Pd2+ species, which can significantly boost the desorption of intermediate PdHx species at low temperatures and contribute to enhanced sensing performance. Our work illustrates the effect of MSI on sensing performance and provides insight into the design of advanced sensing materials.
Collapse
Affiliation(s)
- Xuan-Yu Yang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Zheng-Guang Zhao
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Li-Juan Yue
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Ke-Feng Xie
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Gui-Xin Jin
- Hanwei Electronics Group Corporation, Zhengzhou 450001, P. R. China
| | - Shao-Ming Fang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Yong-Hui Zhang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| |
Collapse
|
5
|
Li C, Zhu H, Guo Y, Ye S, Wang T, Fu Y, Zhang X. Hydrogen-Induced Aggregation of Au@Pd Nanoparticles for Eye-Readable Plasmonic Hydrogen Sensors. ACS Sens 2022; 7:2778-2787. [PMID: 36073785 DOI: 10.1021/acssensors.2c01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmonic materials provide a promising platform for optical hydrogen detection, but their sensitivities remain limited. Herein, a new type of eye-readable H2 sensor based on Au@Pd core-shell nanoparticle arrays (NAs) is reported. After exposed to 2% H2, Au@Pd (16/2) NAs demonstrate a dramatic decrease in the optical extinction intensity, along with an obvious color change from turquoise to gray. Experimental results and theoretical calculations prove that the huge optical change resulted from the H2-induced aggregation of Au@Pd nanoparticles (NPs), which remarkably alters the plasmon coupling effect between NPs. Moreover, we optimize the sensing behavior from two aspects. The first is selecting appropriate substrates (either rigid glass substrate or flexible polyethylene terephthalate substrate) to offer moderate adhesion force to NAs, ensuring an efficient aggregation of Au@Pd NPs upon H2 exposure. The second is adjusting the Pd shell thickness to control the extent of NP aggregation and thus the detection range of the as-prepared sensors. This work highlights the advantage of designing eye-readable plasmonic H2 sensors from the aspect of tuning the interparticle plasmonic coupling in NP assemblies. Au@Pd NAs presented here have several advantages in terms of simple fabrication method, eye-readability in air background at room temperature, tunable detection range, and high cost-effectiveness.
Collapse
Affiliation(s)
- Chao Li
- College of Sciences, Northeastern University, Shenyang 110189, People's Republic of China
| | - Huili Zhu
- College of Sciences, Northeastern University, Shenyang 110189, People's Republic of China
| | - Yu Guo
- College of Sciences, Northeastern University, Shenyang 110189, People's Republic of China
| | - Shunsheng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, People's Republic of China
| | - Tieqiang Wang
- College of Sciences, Northeastern University, Shenyang 110189, People's Republic of China
| | - Yu Fu
- College of Sciences, Northeastern University, Shenyang 110189, People's Republic of China
| | - Xuemin Zhang
- College of Sciences, Northeastern University, Shenyang 110189, People's Republic of China
| |
Collapse
|
6
|
Li Q, Yang S, Lu X, Wang T, Zhang X, Fu Y, Qi W. Controllable Fabrication of PdO-PdAu Ternary Hollow Shells: Synergistic Acceleration of H 2 -Sensing Speed via Morphology Regulation and Electronic Structure Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106874. [PMID: 35218118 DOI: 10.1002/smll.202106874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Designing ultrafast H2 sensors is of particular importance for practical applications of hydrogen energy but still quite challenging. Herein, PdO decorated PdAu ternary hollow shells (PdO-PdAu HSs) exhibiting an ultrafast response of ≈0.9 s to 1% H2 in air at room temperature are presented. PdO-PdAu HSs are fabricated by calcinating PdAu bimetallic HSs in air to form PdO-Au binary HSs, which are then partially reduced by NaBH4 solution, forming PdO-PdAu HSs. This ternary hybrid material takes advantage of multiple aspects to synergistically accelerate the sensing speed. The HS morphology promises high gas accessibility and high surface area for H2 adsorption, and decoration of Au and PdO alters the electronic state of Pd and reduces the energy barrier for hydrogen diffusing from the surface site of Pd into the subsurface site. The content of Au and PdO in the ternary HSs can be simply tuned, which offers the possibility to optimize their promotion effects to reach the best performance. The proposed fabrication strategy sheds light on the rational design of ultrafast Pd-based H2 sensors by controlling the sensor structure and engineering the electronic state of active species.
Collapse
Affiliation(s)
- Qian Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Shuang Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Xingyu Lu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P. R. China
| | - Tieqiang Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Xuemin Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Wei Qi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P. R. China
| |
Collapse
|