1
|
Kiker MT, Uddin A, Stevens LM, O'Dea CJ, Mason KS, Page ZA. Onium Photocages for Visible-Light-Activated Poly(thiourethane) Synthesis and 3D Printing. J Am Chem Soc 2024; 146:19704-19709. [PMID: 38981090 DOI: 10.1021/jacs.4c07220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The lack of chemical diversity in light-driven reactions for 3D printing poses challenges in the production of structures with long-term ambient stability, recyclability, and breadth in properties (mechanical, optical, etc.). Herein we expand the scope of photochemistries compatible with 3D printing by introducing onium photocages for the rapid formation of poly(thiourethanes) (PTUs). Efficient nonsensitized visible-light photolysis releases organophosphine and -amine derivatives that catalyze thiol-isocyanate polyaddition reactions with excellent temporal control. Two resin formulations comprising commercial isocyanates and thiols were developed for digital light processing (DLP) 3D printing to showcase the fast production of high-resolution PTU objects with disparate mechanical properties. Onium photocages represent valuable tools to advance light-driven manufacturing of next-generation high-performance sustainable materials.
Collapse
Affiliation(s)
- Meghan T Kiker
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ain Uddin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lynn M Stevens
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Connor J O'Dea
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Keldy S Mason
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachariah A Page
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Sun Y, Liu Z, Zhang C, Zhang X. Sustainable Polymers with High Performance and Infinite Scalability. Angew Chem Int Ed Engl 2024; 63:e202400142. [PMID: 38421200 DOI: 10.1002/anie.202400142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Our society has been pursuing high-performance biodegradable polymers made from facile methods and readily available monomers. Here, we demonstrate a library of enzyme-degradable polymers with desirable properties from the first reported step polyaddition of diamines, COS, and diacrylates. The polymers contain in-chain ester and thiourethane groups, which can serve as lipase-degradation and hydrogen-bonding physical crosslinking points, respectively, resulting in possible biodegradability as well as upgraded mechanical and thermal properties. Also, the properties of the polymers are scalable due to the versatile method and the wide variety of monomers. We obtain 46 polymers with tunable performance covering high-Tm crystalline plastics, thermoplastic elastomers, and amorphous plastics by regulating polymer structure. Additionally, the polymerization method is highly efficient, atom-economical, quantitatively yield, metal- and even catalyst-free. Overall, the polymers are promising green materials given their degradability, simple and modular synthesis, remarkable and tunable properties, and readily available monomers.
Collapse
Affiliation(s)
- Yue Sun
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Ziheng Liu
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Chengjian Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xinghong Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| |
Collapse
|
3
|
Lewis SH, Fugolin APP, Bartolome A, Pfeifer CS. Relaxation mechanisms in low-stress polymer networks with alternative chemistries. JADA FOUNDATIONAL SCIENCE 2024; 3:100033. [PMID: 39742085 PMCID: PMC11687333 DOI: 10.1016/j.jfscie.2024.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Background Low-stress resin-based composites (RBCs) are available to the clinician, some using stress relaxation mechanisms on the basis of network reconfiguration, modulated photopolymerization, or chain transfer reactions. This study investigated those materials in terms of their overall stress relaxation and their relationship with polymerization kinetics and compared them with an experimental low-stress thiourethane (TU) material. Methods Experimental composites (bisphenol-A-diglycidyl dimethacrylate, urethane dimethacrylate, and triethylene glycol dimethacrylate [50:30:20 mass ratio]; 70% barium aluminosilicate filler; camphoroquinone, ethyl-4-dimethylaminobenzoate, and 2,6-di-tert-butyl-4-methylphenol [0.2:0.8:0.2% by mass]) with or without TU oligomer (synthesized in-house) and commercial composites (SureFil SDR Flow+ Posterior Bulk Fill Flowable Base [SDR Flow+] [Dentsply Sirona], Filtek Bulk Fill Posterior Restorative [3M ESPE], and Filtek Supreme Ultra Universal Restorative [3M ESPE]) were tested. Polymerization kinetics (near-infrared) and polymerization stress (Bioman) were evaluated during light-emitting diode photoactivation at 100 mW/cm2 for 20 seconds. Stress relaxation was assessed using dynamic mechanical analysis. Data were analyzed with a 1-way analysis of variance and Tukey test (α = 0.05). Results The kinetic profiles of all materials differed substantially, including more than a 2-fold difference in the rate of polymerization between TU-modified composites and SDR Flow+. TU-modified RBCs also showed more than a 2-fold higher conversion at the onset of deceleration vs the experimental control and commercial materials. RBCs that used stress reduction mechanisms showed at least a 34% reduction in polymerization stress compared with the controls and significantly reduced the amount of early-onset stress buildup. SDR Flow+ and the TU-modified RBCs showed the greatest amount of viscoelastic stress relaxation postpolymerization. Conclusions The novel TU-modified materials showed similar or improved performance compared with commercial low-stress RBCs, showing that chain transfer may be a promising strategy for stress reduction, both during polymerization and after polymerization.
Collapse
Affiliation(s)
- Steven H Lewis
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR
| | - Ana Paula P Fugolin
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR
| | - Anissa Bartolome
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR
| | - Carmem S Pfeifer
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR
| |
Collapse
|
4
|
Leanza S, Wu S, Sun X, Qi HJ, Zhao RR. Active Materials for Functional Origami. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302066. [PMID: 37120795 DOI: 10.1002/adma.202302066] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In recent decades, origami has been explored to aid in the design of engineering structures. These structures span multiple scales and have been demonstrated to be used toward various areas such as aerospace, metamaterial, biomedical, robotics, and architectural applications. Conventionally, origami or deployable structures have been actuated by hands, motors, or pneumatic actuators, which can result in heavy or bulky structures. On the other hand, active materials, which reconfigure in response to external stimulus, eliminate the need for external mechanical loads and bulky actuation systems. Thus, in recent years, active materials incorporated with deployable structures have shown promise for remote actuation of light weight, programmable origami. In this review, active materials such as shape memory polymers (SMPs) and alloys (SMAs), hydrogels, liquid crystal elastomers (LCEs), magnetic soft materials (MSMs), and covalent adaptable network (CAN) polymers, their actuation mechanisms, as well as how they have been utilized for active origami and where these structures are applicable is discussed. Additionally, the state-of-the-art fabrication methods to construct active origami are highlighted. The existing structural modeling strategies for origami, the constitutive models used to describe active materials, and the largest challenges and future directions for active origami research are summarized.
Collapse
Affiliation(s)
- Sophie Leanza
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
5
|
Zhou Y, Liu W, Zhang S, Liu H, Wu Z, Wang X. Eco-Friendly Flame-Retardant Phase-Change Composite Films Based on Polyphosphazene/Phosphorene Hybrid Foam and Paraffin Wax for Light/Heat-Dual-Actuated Shape Memory. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7754-7767. [PMID: 38306229 DOI: 10.1021/acsami.3c16953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Multiactuated shape memory materials are a class of promising intelligent materials that have received great interest in the fields of self-healing, anticounterfeiting, biomedical, soft robotic, and smart thermal management applications. To obtain a light/heat-dual-actuated shape memory material for thermal management applications in fire safety, we have designed a type of halogen-free flame-retardant phase-change composite film based on polyaryloxyphosphazene (PDAP)/phosphorene (PR) hybrid foam as a support material and paraffin wax (PW) as a phase-change material (PCM). PDAP was synthesized as a flexible foam matrix through the ring-opening polymerization of hexachlorocyclotriphosphazene, followed by a substitution reaction of aryloxy groups. The porosity of the PDAP foam is improved by introducing PR nanosheets, facilitating a high latent heat capacity of the PDAP-PR/PW composite films for thermal management applications. The PDAP-PR/PW composite films can implement rapid shape recovery within 65 s in the heating process, which is much shorter than that of the corresponding film without PR nanosheets (185 s). Furthermore, the PDAP-PR/PW composite films also exhibit light-actuated shape memory behavior thanks to their good solar-to-thermal energy absorption and conversion contributed by PR nanosheets as a highly effective photothermal material. More importantly, the presence of PR nanosheets imparts an excellent flame-retardant property to the PDAP-PR/PW composite films. The PDAP-PR/PW composite film can be self-extinguished within 2 s after the flame. Through an innovative integration of flexible polyphosphazene foam, PR nanosheets, and solid-liquid PCM to obtain a sensitive actuating response to light and heat, this study offers a new approach for developing multiactuated and eco-friendly flame-retardant shape memory materials to meet the requirement of applications with a requirement of fire safety in soft actuators, thermal therapy, control devices, and so on.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Liu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Shuangkun Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Huan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhanpeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xiaodong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Peng W, Mu H, Liang X, Zhang X, Zhao Q, Xie T. Digital Laser Direct Writing of Internal Stress in Shape Memory Polymer for Anticounterfeiting and 4D Printing. ACS Macro Lett 2023; 12:1698-1704. [PMID: 38039381 DOI: 10.1021/acsmacrolett.3c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Shape memory polymers (SMPs) are a type of smart shape-shifting material that can respond to various stimuli. Their shape recovery pathway is determined by the internal stress stored in the temporary shapes. Thus, manipulating the internal stress is key to the potential applications of SMPs. This is commonly achieved by the types of deformation forces applied during the programming stage. In contrast, we present here a digital laser direct writing method to selectively induce thermal relaxation of internal stress stored in the two-dimensional (2D) shape of a thermoplastic SMP. The internal stress field, while invisible under natural light, can be visualized under polarized light. Consequently, the digital stress pattern can be used for anticounterfeiting. In addition, further uniform heating induces the release of the programmed internal stress within the 2D film. This triggers its transformation into a three-dimensional (3D) shape, enabling 4D printing. The simplicity and versatility of our approach in manipulating internal stress and shape-shifting make it attractive for potential applications.
Collapse
Affiliation(s)
- Wenjun Peng
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Hongfeng Mu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xin Liang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Xianming Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
7
|
Ma RY, Sun WJ, Xu L, Jia LC, Yan DX, Li ZM. Permanent Shape Reconfiguration and Locally Reversible Actuation of a Carbon Nanotube/Ethylene Vinyl Acetate Copolymer Composite by Constructing a Dynamic Cross-Linked Network. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40954-40962. [PMID: 37584965 DOI: 10.1021/acsami.3c07931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Given the rapid developments in modern devices, there is an urgent need for shape-memory polymer composites (SMPCs) in soft robots and other fields. However, it remains a challenge to endow SMPCs with both a reconfigurable permanent shape and a locally reversible shape transformation. Herein, a dynamic cross-linked network was facilely constructed in carbon nanotube/ethylene vinyl acetate copolymer (CNT/EVA) composites by designing the molecular structure of EVA. The CNT/EVA composite with 0.05 wt % CNT realized a steady-state temperature of ∼75 °C under 0.11 W/cm2 light intensity, which gave rise to remote actuation behavior. The dynamic cross-linked network along with a wide melting temperature offered opportunities for chemical and physical programming, thus realizing the achievement of the programmable three-dimensional (3D) structure and locally reversible actuation. Specifically, the CNT/EVA composite exhibited a superior permanent shape reconfiguration by activating the dynamic cross-linked network at 140 °C. The composite also showed a high reversible deformation rate of 11.1%. These features endowed the composites with the capability of transformation to 3D structure as well as locally reversible actuation performance. This work provides an attractive guideline for the future design of SMPCs with sophisticated structures and actuation capability.
Collapse
Affiliation(s)
- Rui-Yu Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wen-Jin Sun
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Ling Xu
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Li-Chuan Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Ding-Xiang Yan
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Zeng Y, Song J, Li J, Yuan C. Influence of Isocyanate Structure on Recyclable Shape Memory Poly(thiourethane). MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114040. [PMID: 37297174 DOI: 10.3390/ma16114040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
In this study, poly(thiourethane) (PTU) with different structures is synthesized by click chemistry from trimethylolpropane tris(3-mercaptopropionate) (S3) and different diisocyanates (hexamethylene diisocyanate, HDI, isophorone diisocyanate, IPDI and toluene diisocyanate, TDI). Quantitative analysis of the FTIR spectra reveals that the reaction rates between TDI and S3 are the most rapid, resulting from the combined influence of conjugation and spatial site hindrance. Moreover, the homogeneous cross-linked network of the synthesized PTUs facilitates better manageability of the shape memory effect. All three PTUs exhibit excellent shape memory properties (Rr and Rf are over 90%), and an increase in chain rigidity is observed to negatively impact the shape recovery rate and fix rate. Moreover, all three PTUs exhibit satisfactory reprocessability performance, and an increase in chain rigidity is accompanied by a greater decrease in shape memory and a smaller decrease in mechanical performance for recycled PTUs. Contact angle (<90°) and in vitro degradation results (13%/month for HDI-based PTU, 7.5%/month for IPDI-based PTU, and 8.5%/month for TDI-based PTU) indicate that PTUs can be used as long-term or medium-term biodegradable materials. The synthesized PTUs have a high potential for applications in smart response scenarios requiring specific glass transition temperatures, such as artificial muscles, soft robots, and sensors.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering, Chang'an University, Xi'an 710018, China
| | - Jiale Song
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering, Chang'an University, Xi'an 710018, China
| | - Jinfu Li
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering, Chang'an University, Xi'an 710018, China
| | - Chi Yuan
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering, Chang'an University, Xi'an 710018, China
| |
Collapse
|
9
|
Peng S, Cao X, Sun Y, Chen L, Ma C, Yang L, Zhao H, Liu Q, Liu Z, Ma C. Polyurethane Shape Memory Polymer/pH-Responsive Hydrogel Hybrid for Bi-Function Synergistic Actuations. Gels 2023; 9:gels9050428. [PMID: 37233019 DOI: 10.3390/gels9050428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023] Open
Abstract
Stimuli-responsive actuating hydrogels response to the external stimulus with complex deformation behaviors based on the programmable anisotropic structure design are one of the most important smart soft materials, which have great potential applications in artificial muscles, smart values, and mini-robots. However, the anisotropic structure of one actuating hydrogel can only be programmed one time, which can only provide single actuating performance, and subsequently, has severely limited their further applications. Herein, we have explored a novel SMP/hydrogel hybrid actuator through combining polyurethane shape memory polymer (PU SMP) layer and pH-responsive polyacrylic-acid (PAA) hydrogel layer by a napkin with UV-adhesive. Owing to both the super-hydrophilicity and super-lipophilicity of the cellulose-fiber based napkin, the SMP and the hydrogel can be bonded firmly by the UV-adhesive in the napkin. More importantly, this bilayer hybrid 2D sheet can be programmed by designing a different temporary shape in heat water which can be fixed easily in cool water to achieve various fixed shapes. This hybrid with a fixed temporary shape can achieve complex actuating performance based on the bi-functional synergy of temperature-triggered SMP and pH-responsive hydrogel. The relatively high modulus PU SMP achieved high to 87.19% and 88.92% shape-fixing ratio, respectively, correspond to bending and folding shapes. The hybrid actuator can actuate with the 25.71 °/min actuating speed. Most importantly, one SMP/hydrogel bi-layer hybrid sheet was repeatedly programmed at least nine times in our research to fix various temporary 1D, 2D and 3D shapes, including bending, folding and spiraling shapes. As a result, only one SMP/hydrogel hybrid can provide various complex stimuli-responsive actuations, including the reversable bending-straightening, spiraling-unspiraling. A few of the intelligent devices have been designed to simulate the movement of the natural organisms, such as bio-mimetic "paw", "pangolin" and "octopus". This work has developed a new SMP/hydrogel hybrid with excellent multi-repeatable (≥9 times) programmability for high-level complex actuations, including the 1D to 2D bending and the 2D to 3D spiraling actuations, which also provides a new strategy to design other new soft intelligent materials and systems.
Collapse
Affiliation(s)
- Shuyi Peng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xingyu Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Lin Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Chao Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Lang Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Hongliang Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material for State Market Regulation, Products Quality Supervision and Testing Institute of Hainan Province, Haikou 570203, China
| | - Qijie Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China
| | - Zhenzhong Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material for State Market Regulation, Products Quality Supervision and Testing Institute of Hainan Province, Haikou 570203, China
| |
Collapse
|
10
|
Li Z, Mei S, Luo L, Li S, Chen X, Zhang Y, Zhao W, Zhang X, Shi G, He Y, Cui Z, Fu P, Pang X, Liu M. Multiple/Two-Way Shape Memory Poly(urethane-urea-amide) Elastomers. Macromol Rapid Commun 2023; 44:e2200693. [PMID: 36250510 DOI: 10.1002/marc.202200693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Multiple and two-way reversible shape memory polymers (M/2W-SMPs) are highly promising for many fields due to large deformation, lightweight, strong recovery stress, and fast response rates. Herein, a semi-crystalline block poly(urethane-urea-amide) elastomers (PUUAs) are prepared by the copolymerization of isocyanate-terminated polyurethane (OPU) and amino-terminated oligomeric polyamide-1212 (OPA). PUUAs, composed of OPA as stationary phase and PTMEG as reversible phase, exhibit excellent rigidity, flexibility, and resilience, and cPUUA-C7 -S25 exhibits the best tensile property with strength of 10.3 MPa and elongation at break of 360.2%. Besides, all the PUUAs possess two crystallization/melting temperatures and a glass transition temperature, which endow PUUAs with multiple and reversible two-way shape memory effect (M/2W-SME). Physically crosslinked PUUA-C0 -S25 exhibits excellent dual and triple shape memory, and micro chemically crosslinked cPUUA-C7 -S25 further shows quadruple shape memory behavior. Additionally, both PUUA-C0 -S25 and cPUUA-C7 -S25 have 2W-SME. Intriguingly, cPUUA-C7 -S25 can achieve a higher temperature (up to 165 °C) SME, which makes it suitable for more complex and changeable applications. Based on the advantages of M/2W-SME, a temperature-responsive application scenario where PUUAs can transform spontaneously among different shapes is designed. These unique M/2W-SME and high-temperature SME will enable the applications of high-temperature sensors, actuators, and aerospace equipment.
Collapse
Affiliation(s)
- Zhen Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuxiang Mei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Lu Luo
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyuan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoyin Chen
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuancheng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Wei Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Xiaomeng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Ge Shi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Yanjie He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Zhe Cui
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Peng Fu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Xinchang Pang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Minying Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| |
Collapse
|
11
|
Zhao C, Yue H, Huang M, He S, Liu H, Liu W, Zhu C, Jiang L. Thermal/Near-Infrared Light Dual-Responsive Reconfigurable and Recyclable Polythiourethane/CNT Composite with Simultaneously Enhanced Strength and Toughness. Macromol Rapid Commun 2022; 44:e2200806. [PMID: 36444920 DOI: 10.1002/marc.202200806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/11/2022] [Indexed: 12/03/2022]
Abstract
Thermoset polymers cross-linked by dynamic covalent bonds are recyclable and reconfigurable based on solid-state plasticity, resulting in less waste and environmental pollution. However, most thermoset polymers previously reported show thermal-responsive solid-state plasticity, depending much on external conditions and not allowing for local shape modulation. Here, the isocyanate modified carbon nanotubes (CNTs-NCO) are introduced into the polythiourethane (PCTU) network with multiple dynamic covalent bonds by in situ polymerization to prepare the composite with thermal/light dual-responsive solid-state plasticity, reconfigurability, and recyclability. The introduction of CNTs-NCO simultaneously strengthens and toughens the PCTU composite. Moreover, based on the photothermal properties and light-responsive solid-state plasticity, the PCTU/CNTs composite or bilayer sample could achieve complex permanent shape by locally precise shape regulation without affecting other parts. This work provides a simple and reliable method for preparing high-performance polymer composite with light-responsive solid-state plasticity, which may be applied in the fields of sensing and flexible electronics.
Collapse
Affiliation(s)
- Chunrui Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Huimin Yue
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Miaoming Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.,Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chengshen Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Lei Jiang
- High &New Technology Research Center of Henan Academy of Sciences, Zhengzhou, 450002, P. R. China
| |
Collapse
|
12
|
Hao C, Yue H, Zhou J, He S, Liu H, Huang M, Liu W. Stress‐free two‐way shape memory property and microstructure evolution of single‐phase polymer networks. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chaobo Hao
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Huimin Yue
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Junjie Zhou
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Suqin He
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
- Henan Key Laboratory of Advanced Nylon Materials and Application Zhengzhou University Zhengzhou China
| | - Hao Liu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Miaoming Huang
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Wentao Liu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| |
Collapse
|
13
|
Peng S, Sun Y, Ma C, Duan G, Liu Z, Ma C. Recent advances in dynamic covalent bond-based shape memory polymers. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Dynamic covalent bond-based shape memory polymers (DCB-SMPs) are one of most important SMPs which have a wide potential application prospect. Different from common strong covalent bonds, DCBs own relatively weak bonding energy, similarly to the supramolecular interactions of noncovalent bonds, and can dynamically combine and dissociate these bonds. DCB-SMP solids, which can be designed to respond for different stimuli, can provide excellent self-healing, good reprocessability, and high mechanical performance, because DCBs can obtain dynamic cross-linking without sacrificing ultrahigh fixing rates. Furthermore, besides DCB-SMP solids, DCB-SMP hydrogels with responsiveness to various stimuli also have been developed recently, which have special biocompatible soft/wet states. Particularly, DCB-SMPs can be combined with emerging 3D-printing techniques to design various original shapes and subsequently complex shape recovery. This review has summarized recent research studies about SMPs based on various DCBs including DCB-SMP solids, DCB-SMP hydrogels, and the introduction of new 3D-printing techniques using them. Last but not least, the advantages/disadvantages of different DCB-SMPs have been analyzed via polymeric structures and the future development trends in this field have been predicted.
Collapse
Affiliation(s)
- Shuyi Peng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Chunming Ma
- Shenzhen Institute of Advanced Electronic Materials - Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University , Nanjing , 210037 , China
| | - Zhenzhong Liu
- Research Institute of Zhejiang University-Taizhou , Taizhou 318000 , China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
- Research Institute of Zhejiang University-Taizhou , Taizhou 318000 , China
| |
Collapse
|
14
|
Liu W, Yang S, Huang L, Xu J, Zhao N. Dynamic covalent polymers enabled by reversible isocyanate chemistry. Chem Commun (Camb) 2022; 58:12399-12417. [DOI: 10.1039/d2cc04747k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible isocyanate chemistry containing urethane, thiourethane, and urea bonds is valuable for designing dynamic covalent polymers to achieve promising applications in recycling, self-healing, shape morphing, 3D printing, and composites.
Collapse
Affiliation(s)
- Wenxing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shijia Yang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|