1
|
Bannenberg LJ, Veeneman IM, Straus FIB, Chen HY, Kinane CJ, Hall S, Thijs MA, Schreuders H. Thin Film TaFe, TaCo, and TaNi as Potential Optical Hydrogen Sensing Materials. ACS OMEGA 2024; 9:41978-41989. [PMID: 39398147 PMCID: PMC11465479 DOI: 10.1021/acsomega.4c06955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
This paper studies the structural and optical properties of tantalum-iron-, tantalum-cobalt-, and tantalum-nickel-sputtered thin films both ex situ and while being exposed to various hydrogen pressures/concentrations, with a focus on optical hydrogen sensing applications. Optical hydrogen sensors require sensing materials that absorb hydrogen when exposed to a hydrogen-containing environment. In turn, the absorption of hydrogen causes a change in the optical properties that can be used to create a sensor. Here, we take tantalum as a starting material and alloy it with Fe, Co, or Ni with the aim to tune the optical hydrogen sensing properties. The rationale is that alloying with a smaller element would compress the unit cell, reduce the amount of hydrogen absorbed, and shift the pressure composition isotherm to higher pressures. X-ray diffraction shows that no lattice compression is realized for the crystalline Ta body-centered cubic phase when Ta is alloyed with Fe, Co, or Ni, but that phase segregation occurs where the crystalline body-centered cubic phase coexists with another phase, as for example an X-ray amorphous one or fine-grained intermetallic compounds. The fraction of this phase increases with increasing alloyant concentration up until the point that no more body-centered cubic phase is observed for 20% alloyant concentration. Neutron reflectometry indicates only a limited reduction of the hydrogen content with alloying. As such, the ability to tune the sensing performance of these materials by alloying with Fe, Co, and/or Ni is relatively small and less effective than substitution with previously studied Pd or Ru, which do allow for a tuning of the size of the unit cell, and consequently tunable hydrogen sensing properties. Despite this, optical transmission measurements show that a reversible, stable, and hysteresis-free optical response to hydrogen is achieved over a wide range of hydrogen pressures/concentrations for Ta-Fe, Ta-Co, or Ta-Ni alloys which would allow them to be used in optical hydrogen sensors.
Collapse
Affiliation(s)
- Lars J. Bannenberg
- Faculty
of Applied Sciences, Delft University of
Technology, Mekelweg
15, JB Delft 2629, The Netherlands
| | - Isa M. Veeneman
- Faculty
of Applied Sciences, Delft University of
Technology, Mekelweg
15, JB Delft 2629, The Netherlands
| | - Folkert I. B. Straus
- Faculty
of Applied Sciences, Delft University of
Technology, Mekelweg
15, JB Delft 2629, The Netherlands
| | - Hsin-Yu Chen
- Faculty
of Applied Sciences, Delft University of
Technology, Mekelweg
15, JB Delft 2629, The Netherlands
| | - Christy J. Kinane
- ISIS
Neutron Source, Rutherford Appleton Laboratory, STFC, UKRI, Didcot OX11 0S8X, United
Kingdom
| | - Stephen Hall
- ISIS
Neutron Source, Rutherford Appleton Laboratory, STFC, UKRI, Didcot OX11 0S8X, United
Kingdom
| | - Michel A. Thijs
- Faculty
of Applied Sciences, Delft University of
Technology, Mekelweg
15, JB Delft 2629, The Netherlands
| | - Herman Schreuders
- Faculty
of Applied Sciences, Delft University of
Technology, Mekelweg
15, JB Delft 2629, The Netherlands
| |
Collapse
|
2
|
Li G, Shi S, Qian J, Norton JR, Xu GX, Liu JR, Hong X. Kinetics of H· Transfer from CpCr(CO) 3H to Various Enamides: Application to Construction of Pyrrolidines. JACS AU 2023; 3:3366-3373. [PMID: 38155656 PMCID: PMC10751771 DOI: 10.1021/jacsau.3c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/30/2023]
Abstract
The rate constants kH (kD) have been determined at 27 °C for H· (D·) transfer from CpCr(CO)3H(D) to the C=C bonds of various enamides. This process leads to the formation of α-amino radicals. Vinyl enamides with N-alkyl and N-phenyl substituents have proven to be good H· acceptors, with rate constants close to those of styrene and methyl methacrylate. A methyl substituent on the incipient radical site decreases kH by a factor of 4; a methyl substituent on the carbon that will receive the H· decreases kH by a factor of 380. The measured kH values indicate that these α-amino radicals can be used for the cyclization of enamides to pyrrolidines. A vanadium hydride, HV(CO)4(dppe), has proven more effective at the cyclization of enamides than Cr or Co hydrides-presumably because the weakness of the V-H bond leads to faster H· transfer. The use of the vanadium hydride is operationally simple, employs mild reaction conditions, and has a broad substrate scope. Calculations have confirmed that H· transfer is the slowest step in these cyclization reactions.
Collapse
Affiliation(s)
- Guangchen Li
- Department
of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Shicheng Shi
- Department
of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Jin Qian
- Department
of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Jack R. Norton
- Department
of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Guo-Xiong Xu
- Center
of Chemistry for Frontier Technologies, Department of Chemistry, State
Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ji-Ren Liu
- Center
of Chemistry for Frontier Technologies, Department of Chemistry, State
Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xin Hong
- Center
of Chemistry for Frontier Technologies, Department of Chemistry, State
Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Beijing
National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing 100190, P.R. China
- Key
Laboratory of Precise Synthesis of Functional Molecules of Zhejiang
Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province , China
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P.R. China
| |
Collapse
|
3
|
Bannenberg LJ, Schreuders H, van Beugen N, Kinane C, Hall S, Dam B. Tuning the Properties of Thin-Film TaRu for Hydrogen-Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8033-8045. [PMID: 36734486 PMCID: PMC9940109 DOI: 10.1021/acsami.2c20112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Accurate, cost-efficient, and safe hydrogen sensors will play a key role in the future hydrogen economy. Optical hydrogen sensors based on metal hydrides are attractive owing to their small size and costs and the fact that they are intrinsically safe. These sensors rely on suitable sensing materials, of which the optical properties change when they absorb hydrogen if they are in contact with a hydrogen-containing environment. Here, we illustrate how we can use alloying to tune the properties of hydrogen-sensing materials by considering thin films consisting of tantalum doped with ruthenium. Using a combination of optical transmission measurements, ex situ and in situ X-ray diffraction, and neutron and X-ray reflectometry, we show that introducing Ru in Ta results in a solid solution of Ta and Ru up to at least 30% Ru. The alloying has two major effects: the compression of the unit cell with increasing Ru doping modifies the enthalpy of hydrogenation and thereby shifts the pressure window in which the material absorbs hydrogen to higher hydrogen concentrations, and it reduces the amount of hydrogen absorbed by the material. This allows one to tune the pressure/concentration window of the sensor and its sensitivity and makes Ta1-yRuy an ideal hysteresis-free tunable hydrogen-sensing material with a sensing range of >7 orders of magnitude in pressure. In a more general perspective, these results demonstrate that one can rationally tune the properties of metal hydride optical hydrogen-sensing layers by appropriate alloying.
Collapse
Affiliation(s)
- Lars J. Bannenberg
- Faculty
of Applied Sciences, Delft University of
Technology, Mekelweg 15, 2629 JBDelft, The Netherlands
| | - Herman Schreuders
- Faculty
of Applied Sciences, Delft University of
Technology, Mekelweg 15, 2629 JBDelft, The Netherlands
| | - Nathan van Beugen
- Faculty
of Applied Sciences, Delft University of
Technology, Mekelweg 15, 2629 JBDelft, The Netherlands
| | - Christy Kinane
- Faculty
of Applied Sciences, Delft University of
Technology, Mekelweg 15, 2629 JBDelft, The Netherlands
| | - Stephen Hall
- ISIS
Neutron Source, Rutherford Appleton Laboratory,
STFC, UKRI, OX11 0QXDidcot, United Kingdom
| | - Bernard Dam
- Faculty
of Applied Sciences, Delft University of
Technology, Mekelweg 15, 2629 JBDelft, The Netherlands
| |
Collapse
|
4
|
Ohkubo Y, Okazaki Y, Nishino M, Seto Y, Endo K, Yamamura K. Flexible selection of the functional-group ratio on a polytetrafluoroethylene (PTFE) surface using a single-gas plasma treatment. RSC Adv 2022; 12:31246-31254. [PMID: 36349015 PMCID: PMC9623557 DOI: 10.1039/d2ra04763b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/21/2022] [Indexed: 09/07/2024] Open
Abstract
During plasma treatment of polymers, etching occurs and functional groups are introduced on their surface. We assumed that controlling the etching rate would enable plasma treatment using a single gas to control the ratio of functional groups generated on a polymer's surface, although previous studies have indicated that several different types of functional groups are formed when the gaseous species are varied. In this study, we selected the base pressure (BP) as a parameter for controlling the etching rate and subjected polytetrafluoroethylene (PTFE) to plasma treatments using only He gas at various BPs. The chemical composition of the surface of the plasma-treated PTFE samples was evaluated by X-ray photoelectron spectroscopy (XPS), and the ratios of fluorine (CF3, CF2, C-F), oxygen (O-C[double bond, length as m-dash]O, C[double bond, length as m-dash]O, C-O), and carbon (C-C, C[double bond, length as m-dash]C) groups were quantified from the C 1s-XPS spectra. The fluorine-group ratio decreased and the oxygen- and carbon-group ratios increased with decreasing BP. The results demonstrated that plasma treatment using a single gas enabled flexible selection of the ratio of functional groups generated on PTFE via control of the BP.
Collapse
Affiliation(s)
- Yuji Ohkubo
- Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Yuki Okazaki
- Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Misa Nishino
- Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Yosuke Seto
- Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Katsuyoshi Endo
- Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Kazuya Yamamura
- Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| |
Collapse
|
5
|
Comanescu C. Recent Development in Nanoconfined Hydrides for Energy Storage. Int J Mol Sci 2022; 23:7111. [PMID: 35806115 PMCID: PMC9267122 DOI: 10.3390/ijms23137111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogen is the ultimate vector for a carbon-free, sustainable green-energy. While being the most promising candidate to serve this purpose, hydrogen inherits a series of characteristics making it particularly difficult to handle, store, transport and use in a safe manner. The researchers' attention has thus shifted to storing hydrogen in its more manageable forms: the light metal hydrides and related derivatives (ammonia-borane, tetrahydridoborates/borohydrides, tetrahydridoaluminates/alanates or reactive hydride composites). Even then, the thermodynamic and kinetic behavior faces either too high energy barriers or sluggish kinetics (or both), and an efficient tool to overcome these issues is through nanoconfinement. Nanoconfined energy storage materials are the current state-of-the-art approach regarding hydrogen storage field, and the current review aims to summarize the most recent progress in this intriguing field. The latest reviews concerning H2 production and storage are discussed, and the shift from bulk to nanomaterials is described in the context of physical and chemical aspects of nanoconfinement effects in the obtained nanocomposites. The types of hosts used for hydrogen materials are divided in classes of substances, the mean of hydride inclusion in said hosts and the classes of hydrogen storage materials are presented with their most recent trends and future prospects.
Collapse
Affiliation(s)
- Cezar Comanescu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania;
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1 Polizu St., 011061 Bucharest, Romania
- Faculty of Physics, University of Bucharest, Atomiștilor 405, 077125 Magurele, Romania
| |
Collapse
|
6
|
Bannenberg LJ, Schreuders H, Kim H, Sakaki K, Hayashi S, Ikeda K, Otomo T, Asano K, Dam B. Suppression of the Phase Coexistence of the fcc-fct Transition in Hafnium-Hydride Thin Films. J Phys Chem Lett 2021; 12:10969-10974. [PMID: 34738818 PMCID: PMC8607497 DOI: 10.1021/acs.jpclett.1c03411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Metal hydrides may play a paramount role in a future hydrogen economy. While most applications are based on nanostructured and confined materials, studies considering the structural response of these materials to hydrogen concentrate on bulk material. Here, using in situ in- and out-of-plane X-ray diffraction and reflectometry, we study the fcc ↔ fct transition in Hf thin films, an optical hydrogen-sensing material. We show that the confinement of Hf affects this transition: compared to bulk Hf, the transition is pushed to a higher hydrogen-to-metal ratio, the tetragonality of the fct phase is reduced, and phase coexistence is suppressed. These nanoconfinement effects ensure the hysteresis-free response of hafnium to hydrogen, enabling its remarkable performance as a hydrogen-sensing material. In a wider perspective, the results highlight the profound influences of the nanostructuring and nanoconfinement of metal hydrides on their structural response to hydrogen with a significant impact on their applicability in future devices.
Collapse
Affiliation(s)
- Lars J. Bannenberg
- Faculty
of Applied Sciences, Delft University of
Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Herman Schreuders
- Faculty
of Applied Sciences, Delft University of
Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Hyunjeong Kim
- Energy
Process Research Institute, National Institute
of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Kouji Sakaki
- Energy
Process Research Institute, National Institute
of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Shigenobu Hayashi
- Research
Institute for Material and Chemical Measurement, National Institute of Advanced Industrial Science and Technology
(AIST), Tsukuba Central-5,
1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazutaka Ikeda
- Institute
of Materials Structure Science, High Energy
Accelerator Research Organization (KEK), Tokai 319-1106, Japan
| | - Toshiya Otomo
- Institute
of Materials Structure Science, High Energy
Accelerator Research Organization (KEK), Tokai 319-1106, Japan
| | - Kohta Asano
- Energy
Process Research Institute, National Institute
of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Bernard Dam
- Faculty
of Applied Sciences, Delft University of
Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| |
Collapse
|