1
|
Guo L, Han X, Li J, Li W, Chen Y, Manuel P, Schröder M, Yang S. Boosting Adsorption and Selectivity of Acetylene by Nitro Functionalisation in Copper(II)-Based Metal-Organic Frameworks. Angew Chem Int Ed Engl 2025; 64:e202417183. [PMID: 39627161 PMCID: PMC11795735 DOI: 10.1002/anie.202417183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Purification and storage of acetylene (C2H2) are important to many industrial processes. The exploitation of metal-organic framework (MOF) materials to address the balance between selectivity for C2H2 vs carbon dioxide (CO2) against maximising uptake of C2H2 has attracted much interest. Herein, we report that the synergy between unsaturated Cu(II) sites and functional groups, fluoro (-F), methyl (-CH3), nitro (-NO2) in a series of isostructural MOF materials MFM-190(R) that show exceptional adsorption and selectivity of C2H2. At 298 K, MFM-190(NO2) exhibits an C2H2 uptake of 216 cm3 g-1 (320 cm3 g-1 at 273 K) at 1.0 bar and a high selectivity for C2H2/CO2 (up to ~150 for v/v = 2/1) relevant to that in the industrial cracking stream. Dynamic breakthrough studies validate and confirm the excellent separation of C2H2/CO2 by MFM-190(NO2) under ambient conditions. In situ neutron powder diffraction reveals the cooperative binding, packing and selectivity of C2H2 by unsaturated Cu(II) sites and free -NO2 groups.
Collapse
Affiliation(s)
- Lixia Guo
- College of Chemistry and Molecular EngineeringBeijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Xue Han
- College of ChemistryBeijing Normal UniversityBeijing100875China
| | - Jiangnan Li
- College of Chemistry and Molecular EngineeringBeijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
| | - Weiyao Li
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Yinlin Chen
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Pascal Manuel
- ISIS FacilityRutherford Appleton LaboratoryChiltonOX11 0QXUK
| | - Martin Schröder
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Sihai Yang
- College of Chemistry and Molecular EngineeringBeijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| |
Collapse
|
2
|
Pramanik B, Sahoo R, Krishna R, Das MC. A Chemically Robust Microporous Zn-MOF for C 2H 2 Separation from CO 2 and Industrially Relevant Four Component Gas Mixtures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411456. [PMID: 39711264 PMCID: PMC11855262 DOI: 10.1002/smll.202411456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/10/2024] [Indexed: 12/24/2024]
Abstract
The separation and purification of acetylene from the light hydrocarbon gas mixtures is considered as one of the most industrially challenging task for the production of fine chemicals. Though metal-organic frameworks (MOFs) are promising candidates for such separation and offer a cost and energy-efficient pathway, achieving the trade-off between sorption capacity and separation selectivity along with framework robustness is a daunting task and demands effective design. Herein, a new 3D chemically stable MOF, IITKGP-24 (stable over a wide range of aqueous pH solution, pH = 2-12) is developed, displaying excellent separation selectivity of 13.9 for C2H2/CO2 (50:50) even at ambient conditions and maintained a trade-off between sorption capacity and separation selectivity. Most importantly, the breakthrough performance analysis under the industrially relevant gas mixture composition revealed that the developed framework possesses excellent separation of acetylene from not only C2H2/CO2 (50:50) gas mixtures but also from the quaternary C2H2/C2H4/C2H6/CO2 (25:25:25:25) feed gas streams. Separation of C2H2 from such a four component gas mixture by MOFs is unexplored. The exceptional framework robustness, high C2H2/CO2 uptake ratio, low heat of adsorption, and excellent recyclability with easy regenerability made the developed framework promising candidate toward this challenging separation.
Collapse
Affiliation(s)
- Bikram Pramanik
- Department of ChemistryIndian Institute of Technology KharagpurKharagpurWest Bengal721302India
| | - Rupam Sahoo
- Department of ChemistryIndian Institute of Technology KharagpurKharagpurWest Bengal721302India
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHThe Netherlands
| | - Madhab C. Das
- Department of ChemistryIndian Institute of Technology KharagpurKharagpurWest Bengal721302India
| |
Collapse
|
3
|
Wang W, Chen Y, Feng P, Bu X. Tailorable Multi-Modular Pore-Space-Partitioned Vanadium Metal-Organic Frameworks for Gas Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403834. [PMID: 38718839 DOI: 10.1002/adma.202403834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/27/2024] [Indexed: 05/18/2024]
Abstract
Currently, few porous vanadium metal-organic frameworks (V-MOFs) are known and even fewer are obtainable as single crystals, resulting in limited information on their structures and properties. Here this work demonstrates remarkable promise of V-MOFs by presenting an extensible family of V-MOFs with tailorable pore geometry and properties. The synthesis leverages inter-modular synergy on a tri-modular pore-partitioned platform. New V-MOFs show a broad range of structural features and sorption properties suitable for gas storage and separation applications for C2H2/CO2, C2H6/C2H4, and C3H8/C3H6. The c/a ratio of the hexagonal cell, a measure of pore shape, is tunable from 0.612 to 1.258. Other tunable properties include pore size from 5.0 to 10.9 Å and surface area from 820 to 2964 m2 g-1. With C2H2/CO2 selectivity from 3.3 to 11 and high uptake capacity for C2H2 from 65.2 to 182 cm3 g-1 (298K, 1 bar), an efficient separation is confirmed by breakthrough experiments. The near-record high uptake for C2H6 (166.8 cm3 g-1) contributes to the promise for C2H6-selective separation of C2H6/C2H4. The multi-module pore expansion enables transition from C3H6-selective to more desirable C3H8-selective separation with extraordinarily high C3H8 uptake (254.9 cm3 g-1) and high separation potential (1.25 mmol g-1) for C3H8/C3H6 (50:50 v/v) mixture.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA, 90840, USA
| | - Yichong Chen
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA, 90840, USA
| |
Collapse
|
4
|
Sei H, Oka K, Hori Y, Shigeta Y, Tohnai N. Network topology diversification of porous organic salts. Chem Sci 2024; 15:8008-8018. [PMID: 38817574 PMCID: PMC11134405 DOI: 10.1039/d4sc01218f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Hydrogen-bonded organic frameworks (HOFs) are porous organic materials constructed via hydrogen bonds. HOFs have solubility in specific high-polar organic solvents. Therefore, HOFs can be returned to their components and can be reconstructed, which indicates their high recyclability. Network topologies, which are the frameworks of porous structures, control the pore sizes and shapes of HOFs. Therefore, they strongly affect the functions of porous materials. However, hydrogen bonds are usually weak interactions, and the design of the intended network topology in HOFs from their components has been challenging. Porous organic salts (POSs) are an important class of HOFs, are hierarchically constructed via strong charge-assisted hydrogen bonds between sulfonic acids and amines, and therefore are expected to have high designability of the porous structure. However, the network topology of POSs has been limited to only dia-topology. Here, we combined tetrasulfonic acid with the adamantane core (4,4',4'',4'''-(adamantane-1,3,5,7-tetrayl)tetrabenzenesulfonic acid; AdPS) and triphenylmethylamines with modified substituents in para-positions of benzene rings (TPMA-X, X = F, methyl (Me), Cl, Br, I). We changed the steric hindrance between the adamantane and substituents (X) in TPMA-X and obtained not only the common dia-topology for POSs but also rare sod-topology, and lon- and uni-topologies that are formed for the first time in HOFs. Changing template molecules under preparation helped in successfully isolating the porous structures of AdPS/TPMA-Me with dia-, lon-, and sod-topologies which exhibited different gas adsorption properties. Therefore, for the first time, we demonstrated that the steric design of HOF components facilitated the formation, diversification, and control of the network topologies and functions of HOFs.
Collapse
Affiliation(s)
- Hiroi Sei
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Kouki Oka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
| | - Yuta Hori
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| |
Collapse
|
5
|
Kikuchi K, Sei H, Okubo K, Tohnai N, Oka K, Dekura S, Kikuchi T, Imoto H, Naka K. Breathing Metal-Organic Frameworks Supported by an Arsenic-Bridged 4,4'-Bipyridine Ligand. Inorg Chem 2024; 63:4337-4343. [PMID: 38365195 DOI: 10.1021/acs.inorgchem.3c04570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Bent ligands bridged by heteroatoms have drawn significant interest as supramolecular coordination architectures. Traditionally, divalent group 16 elements are preferred over trivalent group 15 elements because of the anticipated steric hindrance. In this study, we explore metal-organic frameworks (MOFs) based on dipyridinoarsoles (DPAs), 4,4'-bipyridines bridged with an arsenic atom. An MOF with methyl-substituted DPA collapsed upon solvent removal, whereas that with phenyl-substituted DPA demonstrated breathing behavior due to guest molecule adsorption/desorption. In contrast, MOFs using the phosphorus analogue dipyridinophosphole exhibit inferior adsorption and lack breathing behavior. This is the first study to investigate the interplay among substituents, bridging elements, and dynamic behavior in MOFs using bent group 15 ligands.
Collapse
Affiliation(s)
- Kazuma Kikuchi
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroi Sei
- Center for Future Innovation (Cfi) and Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kohei Okubo
- Center for Future Innovation (Cfi) and Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norimitsu Tohnai
- Center for Future Innovation (Cfi) and Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kouki Oka
- Center for Future Innovation (Cfi) and Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shun Dekura
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kash iwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Takashi Kikuchi
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- FOREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
6
|
Liu J, Shuai H, Chen J, Chen S, Zhou Z, Wang J, Deng S. Sulfate-Pillared Adsorbent for Efficient Acetylene Separation from Carbon Dioxide and Ethylene. CHEM & BIO ENGINEERING 2024; 1:83-90. [PMID: 39973968 PMCID: PMC11835176 DOI: 10.1021/cbe.3c00094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/21/2025]
Abstract
The effective separation of acetylene (C2H2) from carbon dioxide (CO2) and ethylene (C2H4) presents considerable challenges in the petrochemical industry. In this work, we report a novel sulfate-pillared (SO4 2-) ultra-microporous material, denoted as SOFOUR-DPDS-Ni (SOFOUR = SO4 2-, 4-DPDS = 4,4'-dipyridyldisulfide), for efficient C2H2 capture from both CO2 and C2H4. The sulfate pillars play a crucial role in inducing robust negative electrostatic potentials within the intralayer cavities and interlayer channels, thereby facilitating the selective recognition of C2H2. As a result, SOFOUR-DPDS-Ni demonstrates a remarkable C2H2 adsorption capacity of 1.60 mmol g-1 at 0.01 bar, an exceptional selectivity of 174 for the 50/50 C2H2/CO2 mixture, and a high selectivity of 65 for the 1/99 C2H2/C2H4 mixture. These impressive metrics position SOFOUR-DPDS-Ni as a promising adsorbent for benchmark C2H2 separations. Dynamic breakthrough experiments validate its outstanding performance in separating C2H2 from both the CO2 and C2H4 mixtures. Computational simulations reveal the strong interactions between C2H2 and sulfate pillars, shedding light on the underlying mechanisms driving the adsorption process.
Collapse
Affiliation(s)
- Junhui Liu
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Hua Shuai
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Jingwen Chen
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Shixia Chen
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Zhenyu Zhou
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Jun Wang
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Shuguang Deng
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
7
|
Zhang W, Zou S, Zhou Y, Ji Z, Li H, Zhen G, Chen C, Song D, Wu M. Flexible Microporous Framework for One-Step Acquisition of Ethylene from Ternary C 2 Hydrocarbons. Inorg Chem 2024; 63:3145-3151. [PMID: 38277266 DOI: 10.1021/acs.inorgchem.3c04267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
One-step purification of ethylene (C2H4) from ternary C2 hydrocarbon mixtures is a crucial task and an enduring challenge because of their similar molecular size and physical properties. Owing to their intriguing structural dynamics, flexible MOFs have attracted more attention for gas adsorption and separation. Herein, we report a flexible MOF FJI-W-66 that exhibits rarely seen "breathing" behaviors for C2 hydrocarbons. Upon activation, the channels of guest-free FJI-W-66a significantly contract to a nearly closed-pore state. FJI-W-66a shows the stepwise adsorption isotherms for C2 hydrocarbons, which suggests the occurrence of structural transformation between less open and more open phases. Breakthrough experiments provide evidence that FJI-W-66a can selectively separate C2H4 from C2H2/C2H4/C2H6 mixtures with different ratios under ambient conditions, realizing the one-step acquisition of C2H4 from ternary C2 hydrocarbons.
Collapse
Affiliation(s)
- Wenjing Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Shuixiang Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Yunzhe Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Zhenyu Ji
- College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Hengbo Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Guoli Zhen
- College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Cheng Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Danhua Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Mingyan Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| |
Collapse
|
8
|
Zhang XY, Shi WJ, Wang GD, Hou L, Wang YY. One Co-MOF with F Active Sites for Separation of C 2H 2 from CO 2, C 2H 4, and CH 4. Inorg Chem 2023; 62:16574-16581. [PMID: 37753782 DOI: 10.1021/acs.inorgchem.3c02486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Separating acetylene (C2H2) from other light hydrocarbons and carbon dioxide (CO2) mixtures under mild conditions poses significant challenges due to the remarkably similar properties between C2H2 and those gases. For the goal of C2H2 separation, a F-functionalized organic linker, H2F-PyIP = 2-fluorine-5-(4-pyridyl)isophthalic acid, was designed, and the corresponding metal-organic framework (MOF), {[Co2(F-PyIP)2DMF]·4H2O}n (1), was constructed. The MOF with open channels decorated by the active sites of the F groups revealed the exceptional C2H2 uptake and selectivity over CO2, C2H4, and CH4. The breakthrough experiments with different molar ratios of C2H2-C2H4, C2H2-CO2, and other gas mixtures further verified superior separation capacity of the MOF. In particular, the dynamic separation time intervals for gas mixtures (C2H2/CO2 = 1:1, 1:5, 1:10, and 1:20) fell in the range 30-44 min, highlighting the potential of the MOF for tackling the challenging C2H2/CO2 separation process.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Wen-Juan Shi
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
9
|
Tian J, Chen Q, Jiang F, Yuan D, Hong M. Optimizing Acetylene Sorption through Induced-fit Transformations in a Chemically Stable Microporous Framework. Angew Chem Int Ed Engl 2023; 62:e202215253. [PMID: 36524616 DOI: 10.1002/anie.202215253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Developing practical storage technologies for acetylene (C2 H2 ) is important but challenging because C2 H2 is useful but explosive. Here, a novel metal-organic framework (MOF) (FJI-H36) with adaptive channels was prepared. It can effectively capture C2 H2 (159.9 cm3 cm-3 ) at 1 atm and 298 K, possessing a record-high storage density (561 g L-1 ) but a very low adsorption enthalpy (28 kJ mol-1 ) among all the reported MOFs. Structural analyses show that such excellent adsorption performance comes from the synergism of active sites, flexible framework, and matched pores; where the adsorbed-C2 H2 can drive FJI-H36 to undergo induced-fit transformations step by step, including deformation/reconstruction of channels, contraction of pores, and transformation of active sites, finally leading to dense packing of C2 H2 . Moreover, FJI-H36 has excellent chemical stability and recyclability, and can be prepared on a large scale, enabling it as a practical adsorbent for C2 H2 . This will provide a useful strategy for developing practical and efficient adsorbents for C2 H2 storage.
Collapse
Affiliation(s)
- Jindou Tian
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
10
|
Yue L, Wang X, Guo R, Lv Y, Zhang T, Li B, Lin S, Liang Y, Chen DL, He Y. Ligand Conformation Fixation Strategy for Expanding the Structural Diversity of Copper-Tricarboxylate Frameworks and C 2H 2 Purification Performance Studies. Inorg Chem 2023; 62:2415-2424. [PMID: 36683338 DOI: 10.1021/acs.inorgchem.2c04226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Structural and functional expansion of metal-organic frameworks (MOFs) is fundamentally important because it not only enriches the structural chemistry of MOFs but also facilitates the full exploration of their application potentials. In this work, by employing a dual-site functionalization strategy to lock the ligand conformation, we designed and synthesized a pair of biphenyl tricarboxylate ligands bearing dimethyl and dimethoxy groups and fabricated their corresponding framework compounds through coordination with copper(II) ions. Compared to the monofunctionalized version, introduction of two side groups can significantly fix the ligand conformation, and as a result, the dual-methoxy compound exhibited a different network structure from the mono-methoxy counterpart. Although only one almost orthogonal conformation was observed for the two ligands, their coordination framework compounds displayed distinct topological structures probably due to different solvothermal conditions. Significantly, with a hierarchical cage-type structure and good hydrostability, the dimethyl compound exhibited promising practical application value for industrially important C2H2 separation and purification, which was comprehensively demonstrated by equilibrium/dynamic adsorption measurements and the corresponding Clausius-Clapeyron/IAST/DFT theoretical analyses.
Collapse
Affiliation(s)
- Lianglan Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - Xinxin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - Rou Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Yueli Lv
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - Ting Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - Bing Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - Shengjie Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - Ye Liang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| |
Collapse
|
11
|
Ma LN, Wang ZH, Zhang L, Hou L, Wang YY, Zhu Z. Extraordinary Separation of Acetylene-Containing Mixtures in a Honeycomb Calcium-Based MOF with Multiple Active Sites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2971-2978. [PMID: 36600613 DOI: 10.1021/acsami.2c19321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Acetylene (C2H2) separation from multicomponent mixtures is vitally important but industrially challenging for the collection of high-purity C2H2. To address this requirement, the reaction between the alkaline-earth Ca2+ ions with a dicarboxylate-diazolate linker, 4,6-di(1H-tetrazol-5-yl)isophthalic acid (H4dtzip), gave rise to a new metal-organic framework (MOF) material [Ca(dtzip)0.5H2O]·2H2O (1). The material presents unique regular tubular channels based on threefolded helical rod-like secondary building units with rich open metal sites and exposed organic hydrogen-bonding N/O acceptors that enhance the interactions with C2H2 molecules, endowing significant selectivity for C2H2 over C2H4 (5.4), C2H6 (5.6), CH4 (30.0), and CO2 (7.7) at 298 K and 100 kPa. Column breakthrough experiments confirmed the extraordinary C2H2 separation performance of the material with the separation time intervals in the range of 18-24 min g-1 for binary (C2H2-C2H4, C2H2-C2H6, C2H2-CO2, and C2H2-CH4) or ternary (C2H2-C2H4-C2H6 and C2H2-C2H4-CO2) gas mixtures under dynamic conditions.
Collapse
Affiliation(s)
- Li-Na Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Zi-Han Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
12
|
Jiang K, Gao Y, Zhang P, Lin S, Zhang L. A new perchlorate-based hybrid ultramicroporous material with rich bare oxygen atoms for high C2H2/CO2 separation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Mohan B, Kumar S, Chen Q. Obtaining Water from Air Using Porous Metal-Organic Frameworks (MOFs). Top Curr Chem (Cham) 2022; 380:54. [PMID: 36269450 DOI: 10.1007/s41061-022-00410-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/05/2022] [Indexed: 01/01/2023]
Abstract
Water collection from moisture in air, i.e., atmospheric water harvesting, is an urgent future need for society. It can be used for water production everywhere and anytime as an alternative water source in remote areas. However, water harvesting and collection usually relies on desalination, fog, and dewing harvesting, which are energy intensive. In this respect, metal-organic frameworks (MOFs) have broad applicability for water harvesting in water-scarce areas; therefore, the current discussion focuses on this approach. Furthermore, recent progress on MOFs for moisture harvesters is critically discussed. In addition, the design, operation, and water harvesting mechanisms of MOFs are studied. Finally, we discuss critical points for future research for the design of new MOFs as moisture harvesters for use in practical applications. MOF adsorbents offer excellent operating capacity in various temperature and pressure ranges. Rational water harvesters can thus be developed by adjusting structural properties such as the porosity, functionalities, and metal centers, thereby enabling new devices to produce water even in remote areas.
Collapse
Affiliation(s)
- Brij Mohan
- College of Ocean Food and Biological Engineering, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen, 361021, China.
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen, 361021, China.
| |
Collapse
|
14
|
Liu L, Wu S, Li D, Li Y, Zhang H, Li L, Jin S, Yao Z. Partial Linker Substitution Strategy to Construct a Quaternary HKUST-like MOF for Efficient Acetylene Storage and Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36882-36889. [PMID: 35920596 DOI: 10.1021/acsami.2c10346] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multicomponent metal-organic frameworks (MOFs) have received much attention as emerging materials capable of precisely programing exquisite structures and specific functions. Here, we applied a partial linker substitution strategy to compile an HKUST-1-like quaternary MOF by introducing a bifunctional ligand into the well-known HKUST-1 structure. FUT-1, a new HKUST-like tbo topology MOF, was assembled with paddlewheel [Cu2(COO)4], triangular metallocycle pyrazole cluster Cu3(μ3-OH) (NN)3 building blocks, and two distinct linkers. FUT-1 exhibited good mechanical stability, water stability, and chemical stability (pH = 3-12) in aqueous solutions. Moreover, the porous environments created by this multicomponent primitive endow FUT-1 with high C2H2 storage and significantly selective separation performance of C2H2/CO2. Dynamic breakthrough experiments and ideal adsorbed solution theory calculations further demonstrate that FUT-1 can selectively capture C2H2 from C2H2/CO2 mixtures under ambient conditions. Based on grand canonical Monte Carlo simulations, the high C2H2 separation performance of FUT-1 is attributed to the π-complex formed between the C2H2 molecule and the trinuclear metallocycle clusters on the wall, which provides stronger affinity for C2H2 recognition than the CO2 molecule.
Collapse
Affiliation(s)
- Lizhen Liu
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, Fujian, P. R. China
| | - Susu Wu
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, Fujian, P. R. China
| | - Dandan Li
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, Fujian, P. R. China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Lu Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Shaowei Jin
- National Supercomputing Center in Shenzhen, Shenzhen 518000, P. R. China
| | - Zizhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
| |
Collapse
|
15
|
Zhao D, Yu K, Han X, He Y, Chen B. Recent progress on porous MOFs for process-efficient hydrocarbon separation, luminescent sensing, and information encryption. Chem Commun (Camb) 2022; 58:747-770. [PMID: 34979539 DOI: 10.1039/d1cc06261a] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal-organic frameworks (MOFs), as an emerging class of porous materials, excel in designability, regulatability, and modifiability in terms of their composition, topology, pore size, and surface chemistry, thus affording a huge potential for addressing environment and energy-related challenges. In particular, MOFs can be applied as porous adsorbents for the purification of industrially important hydrocarbons through certain process-efficient separation schemes based on selectivity-reversed adsorption and multicomponent separation. Moreover, the vast combination possibilities and controllable and engineerable luminescent units of MOFs make them a versatile platform to develop functionally tailored materials for luminescent sensing and optical data encryption. In this feature article, we summarize the recent progress in the use of porous MOFs for the separation and purification of acetylene (C2H2) and ethylene (C2H4) based on selectivity-reversed adsorption and multicomponent separation strategies. Moreover, we highlight the advances over the past three years in the field of MOF-based luminescent materials for thermometry, turn-on sensing, and information encryption.
Collapse
Affiliation(s)
- Dian Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Kuangli Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Xue Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA.
| |
Collapse
|
16
|
Zhao D, Wang X, Yue L, He Y, Chen B. Porous Metal-Organic Frameworks for Hydrogen Storage. Chem Commun (Camb) 2022; 58:11059-11078. [DOI: 10.1039/d2cc04036k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high gravimetric energy density and environmental benefit place hydrogen as a promising alternative to the widely used fossil fuel, which is however impeded by the lack of safe, energy-saving...
Collapse
|
17
|
Ding T, Li ZY, Gao D, Zheng LN, Shi LT, Gong XS, Gao Z. Construction of two novel non-penetrating Co-MOFs derived from designed 2,4,6-tri(2,4-dicarboxyphenyl) pyridine: synthesis, structure and gas adsorption properties. CrystEngComm 2022. [DOI: 10.1039/d2ce00553k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The strategy of extending ligands and reducing symmetry provide a facile access to obtain a wide variety of linkers for the construction of MOFs bearing diverse structures and intriguing properties....
Collapse
|
18
|
Wang GD, Li YZ, Zhang WF, Hou L, Wang YY, Zhu Z. Acetylene Separation by a Ca-MOF Containing Accessible Sites of Open Metal Centers and Organic Groups. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58862-58870. [PMID: 34870404 DOI: 10.1021/acsami.1c20533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Efficient separation of acetylene from a ternary acetylene-containing mixture is an important and vital task in petrochemical industry, which is difficult to achieve using a single material. Herein, a new Ca2+-based metal-organic framework (MOF) [Ca(dtztp)0.5(DMA)]·2H2O (1) was constructed using the N,O-donor ligand 2,5-di(2H-tetrazol-5-yl)terephthalic acid and the less-studied alkaline earth Ca2+ ions. The MOF shows a 3D honeycomb framework based on unique metal-carboxylate-azolate rod secondary building units. Owing to the presence of high-density organic hydrogen-bonding acceptors and open metal sites (OMSs), the activated MOF shows high adsorption capacity for C2H2 and selectivity for C2H2 over CO2, C2H4, C2H6, and CH4. Dynamic breakthrough experiments indicated the actual C2H2 separation potential of the MOF from binary (C2H2-C2H4 and C2H2-CO2) and ternary (C2H2-C2H4-CO2 and C2H2-C2H4-C2H6) mixtures. Simulations revealed that the synergistic interactions between the OMSs and N atoms in MOF and C2H2 molecules play an important role in the separation of C2H2.
Collapse
Affiliation(s)
- Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yong-Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Wan-Fang Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
19
|
Zhou P, Yue L, Wang X, Fan L, Chen DL, He Y. Improving Ethane/Ethylene Separation Performance of Isoreticular Metal-Organic Frameworks via Substituent Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54059-54068. [PMID: 34730324 DOI: 10.1021/acsami.1c17818] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The preferential capture of ethane (C2H6) over ethylene (C2H4) presents a very cost-effective and energy-saving means applied to adsorptive separation and purification of C2H4 with a high product purity, which is however challenged by low selectivity originating from their similar molecular sizes and physical properties. Substituent engineering has been widely employed for selectivity regulation and improvement, but its effect on C2H6/C2H4 separation has been rarely explored to date. In this work, four isoreticular coordination framework compounds based on 5-(pyridin-3-yl)isophthalate ligands bearing different substituents were rationally constructed. As revealed by isotherm measurements, thermodynamic studies, and IAST computations, they exhibited promising utility for C2H6/C2H4 separation with moderate adsorption heat and a high uptake amount at a relatively low-pressure domain. Furthermore, the C2H6/C2H4 separation potential can be finely tuned and optimized via purposeful substituent alteration. Most remarkably, functionalization with a nonpolar methyl group yielded an improved separation efficiency compared to its parent compound. This work offers a good reference value for enhancing the C2H6/C2H4 separation efficiency of MOFs by engineering the pore microenvironment and dimensions via substituent manipulation.
Collapse
Affiliation(s)
- Ping Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lianglan Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xinxin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lihui Fan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
20
|
Chen L, Zhang H, Ye Y, Yuan Z, Wang J, Yang Y, Lin S, Xiang F, Xiang S, Zhang Z. Microporous polycarbazole frameworks with large conjugated π systems for cyclohexane separation from cyclohexane-containing mixtures. NEW J CHEM 2021. [DOI: 10.1039/d1nj04968b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two microporous polycarbazole frameworks with large conjugated π systems were constructed for cyclohexane separation from cyclohexane-containing mixtures.
Collapse
Affiliation(s)
- Liangji Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Yingxiang Ye
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Jiaqi Wang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Si Lin
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Fahui Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| |
Collapse
|