1
|
Liu Z, Zhu Y, Jin Y, Wang R, Xia J, Wang Y, Yang H, Shen C, Yang S, Zhou Z. Phosphorus Phthalocyanine-Based NIR-II Nanoparticles for Photoacoustic Imaging and Photothermal Therapy of Thrombus. ACS APPLIED BIO MATERIALS 2025. [PMID: 40402091 DOI: 10.1021/acsabm.5c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
A thrombus blocks blood flow, triggering life-threatening diseases like stroke. While drug therapy is the current main treatment, its bleeding side effects are problematic. Researchers are exploring nondrug thrombolysis methods, and photothermal therapy (PTT) offers a noninvasive approach with its unique benefits. However, PTT is usually not potent enough for complete thrombus eradication due to its low targeting ability. Herein, a targeted theranostic agent (S-PPc@ZnDPA) based on a phosphorus phthalocyanine (S-PPc) molecule was modified with phospholipids to enhance water solubility and loaded with the targeting molecule Zn(II)-bis(dipicolylamine) (ZnDPA). S-PPc@ZnDPA is capable of generating photoacoustic signals under 1064 nm light irradiation and has an efficient photothermal conversion efficiency (59.4%), making it a potential NIR-II absorbing nanoagent for integrated thrombosis diagnosis and treatment, as demonstrated by in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Zhaoyang Liu
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Yufeng Zhu
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Yilan Jin
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Rong Wang
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Junjie Xia
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Yingqiao Wang
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Hong Yang
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Changxin Shen
- Department of Blood Transfusion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shiping Yang
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Zhiguo Zhou
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P.R. China
| |
Collapse
|
2
|
Zhang W, Pei B, Zhou Y, Li H, Ma W, Zhou B, Zhou C, Jiang H, Ji X. Emerging Targets, Novel Directions, and Innovative Approaches in Thrombosis Therapy. Aging Dis 2025:AD.2024.1688. [PMID: 40153578 DOI: 10.14336/ad.2024.1688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/11/2025] [Indexed: 03/30/2025] Open
Abstract
In clinical practice, antiplatelet, anticoagulant and fibrinolytic drugs are the mainstay of thrombosis treatment, but their potential bleeding side effects limit their widespread use. Therefore, modifying these existing drugs or developing new therapies that mitigate bleeding risks while maintaining their efficacy and utilization is necessary. Since the critical role of platelets in thrombosis is closely related to their cell surface receptors, intracellular signaling pathways and metabolism, current research focuses on these three major classes of platelet targets to develop new antithrombotic drugs. The coagulation cascade has always been the main target of anticoagulant drugs, but since the role of molecules of the contact system is more critical in thrombosis than in hemostasis, molecules targeting the contact system, such as FXIa and FXIIa, have become the main direction of anticoagulant drug research at present. Moreover, since the inflammatory response has been found to be significantly associated with thrombosis in recent years, the development of drugs that target inflammatory pathways, such as inflammasome, has also become a hot topic. This article provides a detailed description of these targets or drug formulations that are currently being investigated, including their mode of action and antithrombotic efficiency, and also points out their existing shortcomings. Moreover, antithrombotic nanomedicines can achieve precise release of drugs, which can greatly improve the thrombolytic efficiency and reduce side effects. In conclusion, this review focuses on summarizing the current new targets and new methods of antithrombotic drug research, hoping to provide a little reference for future related research.
Collapse
Affiliation(s)
- Weiyue Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Baoqing Pei
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yifan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Hui Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Ma
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Chen Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Huimin Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Xunming Ji
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, 100069, China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| |
Collapse
|
3
|
Cayron AF, Morel S, Allémann E, Bijlenga P, Kwak BR. Imaging of intracranial aneurysms in animals: a systematic review of modalities. Neurosurg Rev 2023; 46:56. [PMID: 36786880 PMCID: PMC9928939 DOI: 10.1007/s10143-023-01953-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/28/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
Intracranial aneurysm (IA) animal models are paramount to study IA pathophysiology and to test new endovascular treatments. A number of in vivo imaging modalities are available to characterize IAs at different stages of development in these animal models. This review describes existing in vivo imaging techniques used so far to visualize IAs in animal models. We systematically searched for studies containing in vivo imaging of induced IAs in animal models in PubMed and SPIE Digital library databases between 1 January 1945 and 13 July 2022. A total of 170 studies were retrieved and reviewed in detail, and information on the IA animal model, the objective of the study, and the imaging modality used was collected. A variety of methods to surgically construct or endogenously induce IAs in animals were identified, and 88% of the reviewed studies used surgical methods. The large majority of IA imaging in animals was performed for 4 reasons: basic research for IA models, testing of new IA treatment modalities, research on IA in vivo imaging of IAs, and research on IA pathophysiology. Six different imaging techniques were identified: conventional catheter angiography, computed tomography angiography, magnetic resonance angiography, hemodynamic imaging, optical coherence tomography, and fluorescence imaging. This review presents and discusses the advantages and disadvantages of all in vivo IA imaging techniques used in animal models to help future IA studies finding the most appropriate IA imaging modality and animal model to answer their research question.
Collapse
Affiliation(s)
- Anne F Cayron
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211, Geneva, Switzerland
- Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Sandrine Morel
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211, Geneva, Switzerland
- Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Clinical Neurosciences - Division of Neurosurgery, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Philippe Bijlenga
- Department of Clinical Neurosciences - Division of Neurosurgery, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211, Geneva, Switzerland.
- Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
Peng F, Xia J, Niu H, Feng X, Zheng T, He X, Xu B, Chen X, Xu P, Zhang H, Chen J, Tong X, Bai X, Li Z, Duan Y, Sui B, Zhao X, Liu A. Systemic immune-inflammation index is associated with aneurysmal wall enhancement in unruptured intracranial fusiform aneurysms. Front Immunol 2023; 14:1106459. [PMID: 36776878 PMCID: PMC9911448 DOI: 10.3389/fimmu.2023.1106459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Inflammation plays a key role in the progression of intracranial aneurysms. Aneurysmal wall enhancement (AWE) correlates well with inflammatory processes in the aneurysmal wall. Understanding the potential associations between blood inflammatory indices and AWE may aid in the further understanding of intracranial aneurysm pathophysiology. Methods We retrospectively reviewed 122 patients with intracranial fusiform aneurysms (IFAs) who underwent both high-resolution magnetic resonance imaging and blood laboratory tests. AWE was defined as a contrast ratio of the signal intensity of the aneurysmal wall to that of the pituitary stalk ≥ 0.90. The systemic immune-inflammation (SII) index (neutrophils × platelets/lymphocytes) was calculated from laboratory data and dichotomized based on whether or not the IFA had AWE. Aneurysmal symptoms were defined as sentinel headache or oculomotor nerve palsy. Multivariable logistic regression and receiver operating characteristic curve analyses were performed to determine how well the SII index was able to predict AWE and aneurysmal symptoms. Spearman's correlation coefficients were used to explore the potential associations between variables. Results This study included 95 patients, of whom 24 (25.3%) presented with AWE. After adjusting for baseline differences in neutrophil to lymphocyte ratios, leukocytes, and neutrophils in the multivariable logistic regression analysis, smoking history (P = 0.002), aneurysmal symptoms (P = 0.047), maximum diameter (P = 0.048), and SII index (P = 0.022) all predicted AWE. The SII index (P = 0.038) was the only independent predictor of aneurysmal symptoms. The receiver operating characteristic curve analysis revealed that the SII index was able to accurately distinguish IFAs with AWE (area under the curve = 0.746) and aneurysmal symptoms (area under the curve = 0.739). Discussion An early elevation in the SII index can independently predict AWE in IFAs and is a potential new biomarker for predicting IFA instability.
Collapse
Affiliation(s)
- Fei Peng
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiaxiang Xia
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Niu
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Feng
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tianheng Zheng
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, China
| | - Xiaoxin He
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Boya Xu
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuge Chen
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hong Zhang
- Operating Room, Heze Municipal Hospital, Heze, Shandong, China
| | - Jigang Chen
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Tong
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Bai
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhiye Li
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yonghong Duan
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Binbin Sui
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,*Correspondence: Aihua Liu, ; Xingquan Zhao,
| | - Aihua Liu
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China,*Correspondence: Aihua Liu, ; Xingquan Zhao,
| |
Collapse
|