1
|
Xu F, Shang D, Zhu C, Du G, Shi J, Dong X, Li X, Liang X. In Situ MXene-Controlled Synthesis of Polycrystalline TiO 2 for Highly Efficient Enrichment of Phosphopeptides. ACS APPLIED MATERIALS & INTERFACES 2025; 17:260-268. [PMID: 39714392 DOI: 10.1021/acsami.4c14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Phosphopeptide enrichment methods based on commercial TiO2 suffer from difficulties in regulating intermolecular interactions, resulting in low coverage rate and the loss of information on multiphosphorylation sites, thereby limiting comprehensive phosphoproteomic analysis. In this work, MXene Ti3C2Tx was incorporated into the design of enrichment materials, with its surface structure functionalized and regulated to address the low elution efficiency of TiO2 for multiphosphorylated peptides. Upon oxidation treatment, the Ti3C2Tx material formed numerous uniformly distributed TiO2 nanoparticles on the surface of Ti3C2Tx-O, providing abundant affinity sites (Ti-O) for selective phosphopeptide enrichment. The polycrystalline structure and rich oxygen vacancies of the material effectively regulated its binding affinity with phosphate groups, achieving simultaneous high-efficiency enrichment of both monophosphorylated and multiphosphorylated peptides. Its performance was significantly superior to that of commercial TiO2 and IMAC materials. This study presents great promise for the practical application of comprehensive phosphoproteomic analysis in the future and broadens the application of MXene in the biological field.
Collapse
Affiliation(s)
- Feifei Xu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P.R. China
| | - Danyi Shang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Congcong Zhu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P.R. China
| | - Guangzhu Du
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, P.R. China
| | - Jingchen Shi
- School of Pharmacy, Dalian Medical University, Dalian 116044, P.R. China
| | - Xuefang Dong
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P.R. China
| | - Xiuling Li
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P.R. China
| | - Xinmiao Liang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P.R. China
| |
Collapse
|
2
|
Zhang Y, Li N, Li J, Fan M, Zhang Q, Dang F. Bifunctional MNPs@UIO-66-Arg core-shell-satellite nanocomposites for enrichment of phosphopeptides. Mikrochim Acta 2024; 191:211. [PMID: 38502246 DOI: 10.1007/s00604-024-06177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/26/2023] [Indexed: 03/21/2024]
Abstract
A facile and mild method based on self-assembled lysozyme (LYZ) to fabricate bifunctional MNPs@UIO-66-Arg core-shell-satellite nanocomposites (CSSNCs) is reported for the high-efficiency enrichment of phosphopeptides. Under physiological conditions, LYZ rapidly self-assembled into a robust coating on Fe3O4@SiO2 magnetic nanoparticles (MNPs) with abundant surface functional groups, which effectively mediate heterogeneous nucleation and growth of UIO-66 nanocrystals. Well-defined MNPs@UIO-66 CSSNCs with stacked pores, showing high specific surface area (333.65 m2 g- 1) and low mass transfer resistance, were successfully fabricated by fine-tuning of the reaction conditions including reaction time and acetic acid content. Furthermore, the UIO-66 shells were further modified with arginine to obtain bifunctional MNPs@UIO-66-Arg CSSNCs. Thanks to the unique morphology and synergistic effect of Zr-O clusters and guanidine groups, the bifunctional MNPs@UIO-66-Arg CSSNCs exhibited outstanding enrichment performance for phosphopeptides, delivering a low limit of detection (0.1 fmol), high selectivity (β-casein/BSA, mass ratio 1:2000), and good capture capacity (120 mg g- 1). The mechanism for phosphopeptides capture may attribute to the hydrogen bonds, electrostatic interactions, and Zr-O-P bonds between phosphate groups in peptides and guanidyl/Zr-O clusters on bifunctional MNPs@UIO-66-Arg CSSNCs. In addition, the small stacking pores on the core-shell-satellite architecture may selectively capture phosphopeptides with low molecular weight, eliminating interference of other large molecular proteins in complex biological samples.
Collapse
Affiliation(s)
- Yuxiu Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| | - Nan Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China.
| | - Jianru Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| | - Miao Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| | - Qiqi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| | - Fuquan Dang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China.
| |
Collapse
|
3
|
Chen H, Qi Y, Yang C, Tai Q, Zhang M, Shen XZ, Deng C, Guo J, Jiang S, Sun N. Heterogeneous MXene Hybrid-Oriented Exosome Isolation and Metabolic Profiling for Early Screening, Subtyping and Follow-up Evaluation of Bladder Cancer. ACS NANO 2023; 17:23924-23935. [PMID: 38039354 DOI: 10.1021/acsnano.3c08391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Exosome metabolite-based noninvasive liquid biopsy is an emerging research hotspot that tends to substitute current means in clinics. Nanostructure-based mass spectrometry enables continuous exosome isolation and metabolic profiling with superior analysis speed and high efficiency. Herein, we construct a heterogeneous MXene hybrid that possesses ternary binding sites for exosome capture and outstanding matrix performance for metabolite analysis. Upon optimizing experimental conditions, the average extraction of exosomes and their metabolic patterns from a 60 mL urine sample is completed within 45 s (40 samples per batch for 30 min). According to the exosomal metabolic patterns and the subsequently established biomarker panel, we distinguish early bladder cancer (BCa) from healthy controls with an area under the curve (AUC) value greater than 0.995 in model training and validation sets. As well, we realize subtype classification of BCa in the blind test on metabolic patterns, with an AUC value of 0.867. We also explore the significant biomarkers that are sensitive to follow-up patients, which indeed present reverse change levels compared with pathological progression. This study has the potential to guide the development of the liquid biopsy approach.
Collapse
Affiliation(s)
- Haolin Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Yu Qi
- Department of Urology, Zhongshan Hospital, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai 200032, P. R. China
| | - Chenyu Yang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Qunfei Tai
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Man Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Chunhui Deng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai 200032, P. R. China
| | - Shuai Jiang
- Department of Urology, Zhongshan Hospital, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai 200032, P. R. China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
4
|
Zhou Y, Chen Q, Zhong S, Liu H, Koh K, Chen H. Ti 3C 2Tx MXene -facilitated non-selective trapping effect: Efficient SERS detection of exosomal PD-L1. Biosens Bioelectron 2023; 237:115493. [PMID: 37364303 DOI: 10.1016/j.bios.2023.115493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Biosensors developed through a sandwich approach have demonstrated favorable detection performance for exosomal programmed cell death 1 ligand 1 (ExoPD-L1) detection. However, the reported PD-L1 antibodies, peptides, and aptamers utilized in these biosensors typically bind to the extracellular region, with overlapping binding sites that severely constrain the fabrication of biosensors. In this study, we present a simple approach to specifically identify and analyze ExoPD-L1 through the non-selective trapping effect of Ti3C2TX (X=-O, -F, -OH) MXene on exosomes via the formation of Ti-O-P complexation, and the selective capture of peptide-functionalized Au@MPBA (4-Mercaptophenylboronic acid) @SiO2 surface enhanced Raman scattering (SERS) tags on ExoPD-L1. The biosensor delivered a both hypersensitive and reliable performance in exosome detection with a low limit of detection (20.74 particles/mL) in the linear range of 102 to 5×106 particles/mL. Furthermore, the biosensor demonstrated excellent stability and interference resistance in detecting ExoPD-L1 in clinical serum samples, enabling the easy differentiation of breast cancer patients from healthy controls. This work provides new insights into the design of biosensors for exosome detection and can serve as a replicable template for sandwich immunoassay detection for other types of sensors, including but not limited to SERS.
Collapse
Affiliation(s)
- Yangyang Zhou
- School of Medicine, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Qiang Chen
- School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Suyun Zhong
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hezhen Liu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
5
|
Assanvo EF, Nagaraj S, Boa D, Thanikaivelan P. Hybrid collagen-cellulose-Fe 3O 4@TiO 2 magnetic bio-sponges derived from animal skin waste and Kenaf fibers for wastewater remediation. Sci Rep 2023; 13:13365. [PMID: 37591909 PMCID: PMC10435533 DOI: 10.1038/s41598-023-40520-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023] Open
Abstract
Water pollution from synthetic dyes and oil spills has a significant impact on the environment and living species. Here, we developed a low-cost, environmentally friendly and easily biodegradable magnetic hybrid bio-sponge nanocomposite from renewable resources such as collagen and cellulose (Kenaf fibre cellulose-collagen, KFCC). We loaded it with magnetic bimetallic Fe3O4@TiO2 (BFT) NPs to produce a photocatalyst material (KFCC-BFT) for the treatment of colored wastewater as well as a sorbent for oil-water separation. The characterization of the bimetallic BFT NPs by XRD, HRTEM and VSM showed the deposition of TiO2 particles onto the surface of Fe3O4 with lattice interlayers spacing of 0.24 and 0.33 nm for Fe3O4 and TiO2, respectively with ferromagnetic property. The UV-vis diffuse reflectance spectra result indicated that the band gap energy of bio-sponges decreases with the increase of the bimetallic moiety. The photocatalytic efficiency of the as-prepared magnetic hybrid bio-sponge in the degradation of crystal violet dye was up to 91.2% under visible light conditions and 86.6% under direct sunlight exposure. Furthermore, the magnetic hybrid bio-sponge was used to separate motor oil from water (> 99%) and had a high oil sorption capacity of 46.1 g/g. Investigation of the recyclability and reusability performance for 9 cycles revealed that the bio-sponge had a high sorption capacity for up to 5 cycles. Our results suggest that the bio-polymer-supported BFT hybrid nanocomposite is a cost-effective and easily biodegradable photocatalyst and has great potential for real-field environmental remediation applications.
Collapse
Affiliation(s)
- E F Assanvo
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai, 600 020, India
- Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, UFR SFA, Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d'Ivoire
| | - S Nagaraj
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai, 600 020, India
- University of Madras, Chepauk, Chennai, 600005, India
| | - D Boa
- Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, UFR SFA, Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d'Ivoire
| | - P Thanikaivelan
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai, 600 020, India.
- University of Madras, Chepauk, Chennai, 600005, India.
| |
Collapse
|
6
|
Zhang S, Li JY, Gao W, Qiao JQ, Lian HZ. Magnetic Ti 3C 2 MXene Nanosheets Prepared for Enrichment of Phosphopeptides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16505-16514. [PMID: 36947132 DOI: 10.1021/acsami.3c00848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
MXenes have received lots of attention since discovered and have been applied in various fields. In this work, Ti3C2-Fe3O4 composites with exposed non-modified Ti3C2 MXene nanosheets were designed and prepared by an in situ growth strategy and then applied in the enrichment of phosphopeptides. The two-dimensional composites could interact with the phosphopeptides through a metal oxide affinity chromatography mechanism provided by Ti-O and Fe-O bonds and a hydrophilic interaction chromatography mechanism by surface hydroxyl groups. This magnetic nanomaterial with a specific surface area of 66.1 m2·g-1 had high sensitivity to phosphopeptides (0.5 nmol·L-1) and high selectivity (1:1000 of the molar ratio of β-casein to bovine serum albumin). Non-fat milk was adopted as a real sample to preliminarily examine the applicability of the Ti3C2-Fe3O4-based protocol. Subsequently, Qingkailing injection, a kind of traditional Chinese medicine injection, was introduced to further explore the suitability of the nanocomposites for phosphopeptide enrichment from more complex matrices and satisfactory results were obtained.
Collapse
Affiliation(s)
- Sen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Jia-Yuan Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Wei Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Jun-Qin Qiao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| |
Collapse
|
7
|
Thirumurugan A, Ramadoss A, Dhanabalan SS, Kamaraj SK, Chidhambaram N, Gobalakrishnan S, Venegas Abarzúa C, Reyes Caamaño YA, Udayabhaskar R, Morel MJ. MXene/Ferrite Magnetic Nanocomposites for Electrochemical Supercapacitor Applications. MICROMACHINES 2022; 13:1792. [PMID: 36296145 PMCID: PMC9611495 DOI: 10.3390/mi13101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
MXene has been identified as a new emerging material for various applications including energy storage, electronics, and bio-related due to its wider physicochemical characteristics. Further the formation of hybrid composites of MXene with other materials makes them interesting to utilize in multifunctional applications. The selection of magnetic nanomaterials for the formation of nanocomposite with MXene would be interesting for the utilization of magnetic characteristics along with MXene. However, the selection of the magnetic nanomaterials is important, as the magnetic characteristics of the ferrites vary with the stoichiometric composition of metal ions, particle shape and size. The selection of the electrolyte is also important for electrochemical energy storage applications, as the electrolyte could influence the electrochemical performance. Further, the external magnetic field also could influence the electrochemical performance. This review briefly discusses the synthesis method of MXene, and ferrite magnetic nanoparticles and their composite formation. We also discussed the recent progress made on the MXene/ferrite nanocomposite for potential applications in electrochemical supercapacitor applications. The possibility of magnetic field-assisted supercapacitor applications with electrolyte and electrode materials are discussed.
Collapse
Affiliation(s)
- Arun Thirumurugan
- Sede Vallenar, Universidad de Atacama, Costanera #105, Vallenar 1612178, Chile
| | - Ananthakumar Ramadoss
- Advanced Research School for Technology & Product Simulation (ARSTPS), School for Advanced Research in Polymers (SARP), Central Institute of Petrochemicals Engineering & Technology (CIPET), T.V.K. Industrial Estate, Guindy, Chennai 600032, Tamil Nadu, India
| | | | - Sathish-Kumar Kamaraj
- Tecnológico Nacional de México, Instituto Tecnológico El Llano, El Llano 20330, Mexico
| | - Natarajan Chidhambaram
- Department of Physics, Rajah Serfoji Government College (Autonomous), Bharathidasan University, Thanjavur 613005, Tamil Nadu, India
| | - Suyambrakasam Gobalakrishnan
- Department of Nanotechnology, Noorul Islam Centre for Higher Education, Deemed to be University, Kumaracoil 629180, Tamil Nadu, India
| | | | | | - Rednam Udayabhaskar
- Instituto de Investigaciónes Científicasy Tecnológicas (IDICTEC), Universidad de Atacama, Copayapu 485, Copiapo 1531772, Chile
| | - Mauricio J. Morel
- Instituto de Investigaciónes Científicasy Tecnológicas (IDICTEC), Universidad de Atacama, Copayapu 485, Copiapo 1531772, Chile
| |
Collapse
|
8
|
Peng G, Fadeel B. Understanding the bidirectional interactions between two-dimensional materials, microorganisms, and the immune system. Adv Drug Deliv Rev 2022; 188:114422. [PMID: 35810883 DOI: 10.1016/j.addr.2022.114422] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022]
Abstract
Two-dimensional (2D) materials such as the graphene-based materials, transition metal dichalcogenides, transition metal carbides and nitrides (MXenes), black phosphorus, hexagonal boron nitride, and others have attracted considerable attention due to their unique physicochemical properties. This is true not least in the field of medicine. Understanding the interactions between 2D materials and the immune system is therefore of paramount importance. Furthermore, emerging evidence suggests that 2D materials may interact with microorganisms - pathogens as well as commensal bacteria that dwell in and on our body. We discuss the interplay between 2D materials, the immune system, and the microbial world in order to bring a systems perspective to bear on the biological interactions of 2D materials. The use of 2D materials as vectors for drug delivery and as immune adjuvants in tumor vaccines, and 2D materials to counteract inflammation and promote tissue regeneration, are explored. The bio-corona formation on and biodegradation of 2D materials, and the reciprocal interactions between 2D materials and microorganisms, are also highlighted. Finally, we consider the future challenges pertaining to the biomedical applications of various classes of 2D materials.
Collapse
Affiliation(s)
- Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|