1
|
Babu AM, Varghese A. Electroreduction of CO 2 to Methanol Using a Coordination-Moiety-Anchored Carbon-Based Electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40401464 DOI: 10.1021/acs.langmuir.5c01583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Electrochemical reduction of carbon dioxide (CO2ER) has gained wide attention lately because of its potential to create a closed carbon loop, offering a sustainable solution toward environmental as well as energy crisis. However, the key challenge lies in the selective conversion of CO2 into electrofuels, such as methanol, which necessitates six proton-coupled electron transfers. In this work, we report the first instance of an electrochemically prepared Cu-coordinated 2,5-dimercapto-1,3,4-thiadiazole-modified carbon fiber paper electrode (CDM@CFP). The hence-engineered novel electrode was applied for the CO2ER reaction to produce methanol exclusively with an F.E. of 59.6% at a low potential of -0.73 V versus RHE. Unlike most of the copper-based electrocatalysts, which result in multiple hydrocarbons, here, we have optimized a potential-dependent selectivity for maximum efficiency, which is a significant milestone in the field.
Collapse
Affiliation(s)
- Ann Mariella Babu
- Department of Chemistry, Christ University, Bangalore, Karnataka, India-560029
- Centre for Renewable Energy and Environmental Sustainability, Christ University, Bangalore, Karnataka, India-560 029
| | - Anitha Varghese
- Department of Chemistry, Christ University, Bangalore, Karnataka, India-560029
- Centre for Renewable Energy and Environmental Sustainability, Christ University, Bangalore, Karnataka, India-560 029
| |
Collapse
|
2
|
Egbe ON, Morrissey BHP, Kerton FM, Stockmann TJ. Anodic expulsion of Cu nanoparticles from a polycrystalline Cu substrate: a novel corrosion and single entity study approach. NANOSCALE 2025; 17:10609-10619. [PMID: 40165617 DOI: 10.1039/d4nr04863f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cu is the dominant heterogeneous metal catalyst for CO2 reduction (CO2R) in combatting climate change, which often relies on Cu oxides (CuO or Cu2O). This is complicated by the relatively facile reduction of Cu oxides to metallic Cu that precedes CO2R, leading to potential morphological surface restructuring and lowered electrocatalysis. Herein, the anodic ejection of Cu/Cu oxide nanoparticles (NPs) from polycrystalline Cu is tracked through scanning electrochemical microscopy in substrate generation/tip collection (SECM-SG/TC) mode. Single entity electrochemical (SEE) detection of Cu0 and Cu oxide NPs was recorded through the electrocatalytic amplification (ECA) of the CO2R and O2 evolution reaction (OER). The frequency (f) of NP impacts decreases concomitantly with increasing tip-substrate distance, while increasing the absolute value of the ultramicroelectrode (UME) tip potential (Etip, negatively for CO2R and positively for OER) resulted in an increase in stochastic NP impact peak current (ip) commensurate with increasing overpotential. Complementary finite element simulations provide insight into the NP catalyzed CO2R catalytic rate constants as well as the rate of passivation. If substrate oxidation is entirely avoided and cathodic Esub maintained, then no NP ejection was observed. Anodic potentials are often used to oxidize Cu substrates making them more electrocatalytically active as well as to regenerate Cu oxide catalyst layers. We demonstrate that SEE detection offers a potential means of monitoring corrosion/loss of Cu material as well as quantitative kinetics measurement.
Collapse
Affiliation(s)
- Oforbuike N Egbe
- Memorial University of Newfoundland, Chemistry Department, Core Science Facility, 45 Arctic Ave, St. John's, NL A1C 5S7, Canada.
| | - Bradley H P Morrissey
- Memorial University of Newfoundland, Chemistry Department, Core Science Facility, 45 Arctic Ave, St. John's, NL A1C 5S7, Canada.
| | - Francesca M Kerton
- Memorial University of Newfoundland, Chemistry Department, Core Science Facility, 45 Arctic Ave, St. John's, NL A1C 5S7, Canada.
| | - Talia Jane Stockmann
- Memorial University of Newfoundland, Chemistry Department, Core Science Facility, 45 Arctic Ave, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
3
|
Sassenburg M, Iglesias van Montfort HP, Kolobov N, Smith WA, Burdyny T. Bulk Layering Effects of Ag and Cu for Tandem CO 2 Electrolysis. CHEMSUSCHEM 2025; 18:e202401769. [PMID: 39585966 PMCID: PMC11997910 DOI: 10.1002/cssc.202401769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
The electrochemical reduction of carbon dioxide (CO2) presents an opportunity to close the carbon cycle and obtain sustainably sourced carbon compounds. In recent years, copper has received widespread attention as the only catalyst capable of meaningfully producing multi-carbon (C2+) species. Notably carbon monoxide (CO) can also be reduced to C2+ compounds on copper, motivating tandem systems that combine copper and CO-producing species, like silver, to enhance overall C2+ selectivities. In this work, we examine the impact of layered-combinations of bulk Cu and Ag by varying the location and proportion of the CO-producing Ag layer. We report an effective increase in the C2+ oxygenate selectivity from 23 % with a 100 nm Cu to 38 % for a 100 : 15 nm Cu : Ag layer. Notably, however, for all co-catalyst cases there is an overproduction of CO vs Cu alone, even for 5 nm Ag layers. Lastly, due to restructuring and interlayer mobility of the copper layer it is clear that the stability of copper limits the locational advantages of such tandem solutions.
Collapse
Affiliation(s)
- Mark Sassenburg
- Department of Chemical EngineeringDelft University of Technology2629HZDelftThe Netherlands
| | | | - Nikita Kolobov
- Department of Chemical EngineeringDelft University of Technology2629HZDelftThe Netherlands
| | - Wilson A. Smith
- Department of Chemical EngineeringDelft University of Technology2629HZDelftThe Netherlands
- Department of Chemical and Biological Engineering and Renewable and Sustainable Energy Institute (RASEI)University of Colorado BoulderBoulder, Colorado80303United States
- National Renewable Energy LaboratoryGolden80401ColoradoUnited States
| | - Thomas Burdyny
- Department of Chemical EngineeringDelft University of Technology2629HZDelftThe Netherlands
| |
Collapse
|
4
|
de Ruiter J, Benning VRM, Yang S, den Hartigh BJ, Wang H, Prins PT, Dorresteijn JM, Janssens JCL, Manna G, Petukhov AV, Weckhuysen BM, Rabouw FT, van der Stam W. Multiscale X-ray scattering elucidates activation and deactivation of oxide-derived copper electrocatalysts for CO 2 reduction. Nat Commun 2025; 16:373. [PMID: 39753590 PMCID: PMC11698955 DOI: 10.1038/s41467-024-55742-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
Electrochemical reduction of carbon dioxide (CO2) into sustainable fuels and base chemicals requires precise control over and understanding of activity, selectivity and stability descriptors of the electrocatalyst under operation. Identification of the active phase under working conditions, but also deactivation factors after prolonged operation, are of the utmost importance to further improve electrocatalysts for electrochemical CO2 conversion. Here, we present a multiscale in situ investigation of activation and deactivation pathways of oxide-derived copper electrocatalysts under CO2 reduction conditions. Using well-defined Cu2O octahedra and cubes, in situ X-ray scattering experiments track morphological changes at small scattering angles and phase transformations at wide angles, with millisecond to second time resolution and ensemble-scale statistics. We find that undercoordinated active sites promote CO2 reduction products directly after Cu2O to Cu activation, whereas less active planar surface sites evolve over time. These multiscale insights highlight the dynamic and intimate relationship between electrocatalyst structure, surface-adsorbed molecules, and catalytic performance, and our in situ X-ray scattering methodology serves as an additional tool to elucidate the factors that govern electrocatalyst (de)stabilization.
Collapse
Affiliation(s)
- J de Ruiter
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - V R M Benning
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - S Yang
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - B J den Hartigh
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - H Wang
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - P T Prins
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - J M Dorresteijn
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - J C L Janssens
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - G Manna
- The European Synchrotron (ESRF), Grenoble, France
| | - A V Petukhov
- Physical and Colloid Chemistry group, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - B M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - F T Rabouw
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | - W van der Stam
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Rollier FA, Muravev V, Parastaev A, van de Poll RCJ, Heinrichs JMJJ, Ligt B, Simons JFM, Figueiredo MC, Hensen EJM. Restructuring of Cu-based Catalysts during CO Electroreduction: Evidence for the Dominant Role of Surface Defects on the C 2+ Product Selectivity. ACS Catal 2024; 14:13246-13259. [PMID: 39263539 PMCID: PMC11385435 DOI: 10.1021/acscatal.4c02718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
CO is the key reaction intermediate in the Cu-catalyzed electroreduction of CO2 to products containing C-C bonds. Herein, we investigate the impact of the particle size of CuO precursors on the direct electroreduction of CO (CORR) to C2+ products. Flame spray pyrolysis was used to prepare CuO particles with sizes between 4 and 30 nm. In situ synchrotron wide-angle X-ray scattering (WAXS), quasi-in situ X-ray photoelectron spectroscopy, and transmission electron microscopy demonstrated that, during CORR, the CuO precursors transformed into ∼30 nm metallic Cu particles with a crystalline domain size of ∼17 nm, independently of the initial size of the CuO precursors. Despite their similar morphology, the samples presented different Faradaic efficiencies (FEs) to C2+ products. The Cu particles derived from medium-sized (10-20 nm) CuO precursors were the most selective to C2+ products (FE 60%), while those derived from CuO precursors smaller than 10 nm displayed a high FE to H2. As the oxidation state, the particle and the crystallite sizes of these samples were similar after CORR, the differences in product distribution are attributed to the type and density of surface defects on the metallic Cu particles, as supported by studying electrochemical oxidation of the reduced Cu particles during CV cycling in combination with synchrotron WAXS. Cu particles derived from <10 nm CuO contained a higher density of more under-coordinated defects, resulting in a higher FE to H2 than Cu particles derived from 10 to 30 nm CuO. Bulk oxidation was most prominent and stable for Cu particles derived from medium-sized CuO, which indicated the more disordered nature of their surface compared to Cu particles derived from 30 nm CuO precursors and their lower reactivity compared to Cu particles derived from small CuO. Cu particles derived from <10 nm CuO initially displayed intense redox behavior, quickly fading during subsequent CVs. Our results evidence the significant restructuring during the electrochemical reduction of CuO precursors into Cu particles of similar size. The differences in CORR performance of these Cu particles of similar size can be correlated to different surface structures, qualitatively resolved by studying surface and bulk oxidation, which affect the competition between CO dimerization to yield C2+ products and undesired H2 evolution.
Collapse
Affiliation(s)
- Floriane A Rollier
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Valery Muravev
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Alexander Parastaev
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Rim C J van de Poll
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Jason M J J Heinrichs
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Bianca Ligt
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Jérôme F M Simons
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Marta Costa Figueiredo
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Emiel J M Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
6
|
Guan Y, Kümper J, Mürtz SD, Kumari S, Hausoul PJC, Palkovits R, Sautet P. Origin of copper dissolution under electrocatalytic reduction conditions involving amines. Chem Sci 2024:d4sc01944j. [PMID: 39170715 PMCID: PMC11331451 DOI: 10.1039/d4sc01944j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Cu dissolution has been identified as the dominant process that causes cathode degradation and losses even under cathodic conditions involving methylamine. Despite extensive experimental research, our fundamental and theoretical understanding of the atomic-scale mechanism for Cu dissolution under electrochemical conditions, eventually coupled with surface restructuring processes, is limited. Here, driven by the observation that the working Cu electrode is corroded using mixtures of acetone and methylamine even under reductive potential conditions (-0.75 V vs. RHE), we employed Grand Canonical density functional theory to understand this dynamic process under potential from a microscopic perspective. We show that amine ligands in solution directly chemisorb on the electrode, coordinate with the metal center, and drive the rearrangement of the copper surface by extracting Cu as adatoms in low coordination positions, where other amine ligands can coordinate and stabilize a surface copper-ligand complex, finally forming a detached Cu-amine cationic complex in solution, even under negative potential conditions. Calculations predict that dissolution would occur for a potential of -1.1 V vs. RHE or above. Our work provides a fundamental understanding of Cu dissolution facilitated by surface restructuring in amine solutions under electroreduction conditions, which is required for the rational design of durable Cu-based cathodes for electrochemical amination or other amine involving reduction processes.
Collapse
Affiliation(s)
- Yani Guan
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles Los Angeles CA 90095 USA
| | - Justus Kümper
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Sonja D Mürtz
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Simran Kumari
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles Los Angeles CA 90095 USA
| | - Peter J C Hausoul
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Regina Palkovits
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
- Institute for Sustainable Hydrogen Economy (INW-2), Forschungszentrum Jülich Am Brainergy Park 4 52428 Jülich Germany
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles Los Angeles CA 90095 USA
- Department of Chemistry and Biochemistry, University of California Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
7
|
Wu H, Yu H, Chow YL, Webley PA, Zhang J. Toward Durable CO 2 Electroreduction with Cu-Based Catalysts via Understanding Their Deactivation Modes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403217. [PMID: 38845132 DOI: 10.1002/adma.202403217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/23/2024] [Indexed: 06/18/2024]
Abstract
The technology of CO2 electrochemical reduction (CO2ER) provides a means to convert CO2, a waste greenhouse gas, into value-added chemicals. Copper is the most studied element that is capable of catalyzing CO2ER to obtain multicarbon products, such as ethylene, ethanol, acetate, etc., at an appreciable rate. Under the operating condition of CO2ER, the catalytic performance of Cu decays because of several factors that alters the surface properties of Cu. In this review, these factors that cause the degradation of Cu-based CO2ER catalysts are categorized into generalized deactivation modes, that are applicable to all electrocatalytic systems. The fundamental principles of each deactivation mode and the associated effects of each on Cu-based catalysts are discussed in detail. Structure- and composition-activity relationship developed from recent in situ/operando characterization studies are presented as evidence of related deactivation modes in operation. With the aim to address these deactivation modes, catalyst design and reaction environment engineering rationales are suggested. Finally, perspectives and remarks built upon the recent advances in CO2ER are provided in attempts to improve the durability of CO2ER catalysts.
Collapse
Affiliation(s)
- Hsiwen Wu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Haoming Yu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, China
| | - Yuen-Leong Chow
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Paul A Webley
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC, 3800, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC, 3800, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
8
|
Kok J, de Ruiter J, van der Stam W, Burdyny T. Interrogation of Oxidative Pulsed Methods for the Stabilization of Copper Electrodes for CO 2 Electrolysis. J Am Chem Soc 2024; 146:19509-19520. [PMID: 38967202 PMCID: PMC11258781 DOI: 10.1021/jacs.4c06284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Using copper (Cu) as an electrocatalyst uniquely produces multicarbon products (C2+-products) during the CO2 reduction reaction (CO2RR). However, the CO2RR stability of Cu is presently 3 orders of magnitude shorter than required for commercial operation. One means of substantially increasing Cu catalyst lifetimes is through periodic oxidative processes, such as cathodic-anodic pulsing. Despite 100-fold improvements, these oxidative methods only delay, but do not circumvent, degradation. Here, we provide an interrogation of chemical and electrochemical Cu oxidative processes to identify the mechanistic processes leading to stable CO2RR through electrochemical and in situ Raman spectroscopy measurements. We first examine chemical oxidation using an open-circuit potential (OCP), identifying that copper oxidation is regulated by the transient behavior of the OCP curve and limited by the rate of the oxygen reduction reaction (ORR). Increasing O2 flux to the cathode subsequently increased ORR rates, both extending lifetimes and reducing "off" times by 3-fold. In a separate approach, the formation of Cu2O is achieved through electrochemical oxidation. Here, we establish the minimum electrode potentials required for fast Cu oxidation (-0.28 V vs Ag/AgCl, 1 M KHCO3) by accounting for transient local pH changes and tracking oxidation charge transfer. Lastly, we performed a stability test resulting in a 20-fold increase in stable ethylene production versus the continuous case, finding that spatial copper migration is slowed but not mitigated by oxidative pulsing approaches alone.
Collapse
Affiliation(s)
- Jesse Kok
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering,
Faculty of Applied Sciences, Delft University
of Technology, van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Jim de Ruiter
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science
& Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
| | - Ward van der Stam
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science
& Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
| | - Thomas Burdyny
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering,
Faculty of Applied Sciences, Delft University
of Technology, van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| |
Collapse
|
9
|
Liu S, Li Y, Wang D, Xi S, Xu H, Wang Y, Li X, Zang W, Liu W, Su M, Yan K, Nielander AC, Wong AB, Lu J, Jaramillo TF, Wang L, Canepa P, He Q. Alkali cation-induced cathodic corrosion in Cu electrocatalysts. Nat Commun 2024; 15:5080. [PMID: 38871724 PMCID: PMC11176167 DOI: 10.1038/s41467-024-49492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
The reconstruction of Cu catalysts during electrochemical reduction of CO2 is a widely known but poorly understood phenomenon. Herein, we examine the structural evolution of Cu nanocubes under CO2 reduction reaction and its relevant reaction conditions using identical location transmission electron microscopy, cyclic voltammetry, in situ X-ray absorption fine structure spectroscopy and ab initio molecular dynamics simulation. Our results suggest that Cu catalysts reconstruct via a hitherto unexplored yet critical pathway - alkali cation-induced cathodic corrosion, when the electrode potential is more negative than an onset value (e.g., -0.4 VRHE when using 0.1 M KHCO3). Having alkali cations in the electrolyte is critical for such a process. Consequently, Cu catalysts will inevitably undergo surface reconstructions during a typical process of CO2 reduction reaction, resulting in dynamic catalyst morphologies. While having these reconstructions does not necessarily preclude stable electrocatalytic reactions, they will indeed prohibit long-term selectivity and activity enhancement by controlling the morphology of Cu pre-catalysts. Alternatively, by operating Cu catalysts at less negative potentials in the CO electrochemical reduction, we show that Cu nanocubes can provide a much more stable selectivity advantage over spherical Cu nanoparticles.
Collapse
Affiliation(s)
- Shikai Liu
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Yuheng Li
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Di Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Singapore.
| | - Haoming Xu
- Department of Chemistry, National University of Singapore, 12 Science Drive 3, Singapore, 117543, Singapore
| | - Yulin Wang
- Department of Chemistry, National University of Singapore, 12 Science Drive 3, Singapore, 117543, Singapore
| | - Xinzhe Li
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Wenjie Zang
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Weidong Liu
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Mengyao Su
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Katherine Yan
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Adam C Nielander
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Andrew B Wong
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 12 Science Drive 3, Singapore, 117543, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore
| | - Thomas F Jaramillo
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore.
| | - Pieremanuele Canepa
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore.
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore.
| | - Qian He
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore.
| |
Collapse
|
10
|
Parada W, Sajevic U, Mammadzada R, Nikolaienko P, Mayrhofer KJJ. Tethered Alkylammonium Dications as Electrochemical Interface Modifiers: Chain Length Effect on CO 2 Reduction Selectivity at Industry-Relevant Current Density. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30107-30116. [PMID: 38809223 PMCID: PMC11181265 DOI: 10.1021/acsami.4c04632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
The electrochemical reduction of CO2 (CO2RR) has the potential to be an economically viable method to produce platform chemicals synergistically with renewable energy sources. Copper is one of the most commonly used electrocatalysts for this purpose, as it allows C-C bond formation, yielding a broad product distribution. Controlling selectivity is a stepping stone on the way to its industrial application. The kinetics of the reaction can be modified to favor the rates of certain products quickly and inexpensively by applying additives such as ionic liquids and coelectrolytes that directly affect the electrocatalytic interface. In this work, we propose tethered tetraalkylammonium salts as double-charged cationic modifiers of the electrochemical double layer to control CO2RR product selectivity. A novel setup comprising a gas diffusion electrode (GDE) flow cell coupled with real-time mass spectroscopy was used to study the effect of a library of the selected salts. We emphasize how the length of an alkyl linker effectively controls the selectivity of the reaction toward C1, C2, or C3 products at high relevant current densities (Jtotal = -400 mA cm-2) along with the inhibition of the parasitic hydrogen evolution reaction. Standard long-term experiments were performed for quantitative validation and stability evaluation. These results have broad implications for further tailoring an effective catalytic system for selective CO2 reduction reaction.
Collapse
Affiliation(s)
- Walter
A. Parada
- HI
ERN (IEK-11), Forschungszentrum Jülich
GmbH, Erlangen 91058, Germany
- Department
of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nurnberg (FAU), Erlangen 91054, Germany
| | - Urban Sajevic
- HI
ERN (IEK-11), Forschungszentrum Jülich
GmbH, Erlangen 91058, Germany
- Department
of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nurnberg (FAU), Erlangen 91054, Germany
| | - Rashad Mammadzada
- HI
ERN (IEK-11), Forschungszentrum Jülich
GmbH, Erlangen 91058, Germany
- Department
of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nurnberg (FAU), Erlangen 91054, Germany
| | - Pavlo Nikolaienko
- HI
ERN (IEK-11), Forschungszentrum Jülich
GmbH, Erlangen 91058, Germany
| | - Karl J. J. Mayrhofer
- HI
ERN (IEK-11), Forschungszentrum Jülich
GmbH, Erlangen 91058, Germany
- Department
of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nurnberg (FAU), Erlangen 91054, Germany
| |
Collapse
|
11
|
Albertini PP, Newton MA, Wang M, Segura Lecina O, Green PB, Stoian DC, Oveisi E, Loiudice A, Buonsanti R. Hybrid oxide coatings generate stable Cu catalysts for CO 2 electroreduction. NATURE MATERIALS 2024; 23:680-687. [PMID: 38366155 PMCID: PMC11068572 DOI: 10.1038/s41563-024-01819-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
Hybrid organic/inorganic materials have contributed to solve important challenges in different areas of science. One of the biggest challenges for a more sustainable society is to have active and stable catalysts that enable the transition from fossil fuel to renewable feedstocks, reduce energy consumption and minimize the environmental footprint. Here we synthesize novel hybrid materials where an amorphous oxide coating with embedded organic ligands surrounds metallic nanocrystals. We demonstrate that the hybrid coating is a powerful means to create electrocatalysts stable against structural reconstruction during the CO2 electroreduction. These electrocatalysts consist of copper nanocrystals encapsulated in a hybrid organic/inorganic alumina shell. This shell locks a fraction of the copper surface into a reduction-resistant Cu2+ state, which inhibits those redox processes responsible for the structural reconstruction of copper. The electrocatalyst activity is preserved, which would not be possible with a conventional dense alumina coating. Varying the shell thickness and the coating morphology yields fundamental insights into the stabilization mechanism and emphasizes the importance of the Lewis acidity of the shell in relation to the retention of catalyst structure. The synthetic tunability of the chemistry developed herein opens new avenues for the design of stable electrocatalysts and beyond.
Collapse
Affiliation(s)
- Petru P Albertini
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Mark A Newton
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Min Wang
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Ona Segura Lecina
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Philippe B Green
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Dragos C Stoian
- Swiss-Norwegian Beamlines, European Synchrotron Radiation Facility, Grenoble, France
| | - Emad Oveisi
- Interdisciplinary Center for Electron Microscopy, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anna Loiudice
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland.
| |
Collapse
|
12
|
Toleukhanova S, Shen TH, Chang C, Swathilakshmi S, Bottinelli Montandon T, Tileli V. Graphene Electrode for Studying CO 2 Electroreduction Nanocatalysts under Realistic Conditions in Microcells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311133. [PMID: 38217533 DOI: 10.1002/adma.202311133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/28/2023] [Indexed: 01/15/2024]
Abstract
The ability to resolve the dynamic evolution of electrocatalytically induced processes with electrochemical liquid-phase electron microscopy (EM) is limited by the microcell configuration. Herein, a free-standing tri-layer graphene is integrated as a membrane and electrode material into the electrochemical chip and its suitability as a substrate electrode at the high cathodic potentials required for CO2 electroreduction (CO2ER) is evaluated. The three-layer stacked graphene is transferred onto an in-house fabricated single-working electrode chip for use with bulk-like reference and counter electrodes to facilitate evaluation of its effectiveness. Electrochemical measurements show that the graphene working electrode exhibits a wider inert cathodic potential range than the conventional glassy carbon electrode while achieving good charge transfer properties for nanocatalytic redox reactions. Operando scanning electron microscopy studies clearly demonstrate the improvement in spatial resolution but reveal a synergistic effect of the electron beam and the applied potential that limits the stability time window of the graphene-based electrochemical chip. By optimizing the operating conditions, in situ monitoring of Cu nanocube degradation is achieved at the CO2ER potential of -1.1 V versus RHE. Thus, this improved microcell configuration allows EM observation of catalytic processes at potentials relevant to real systems.
Collapse
Affiliation(s)
- Saltanat Toleukhanova
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Tzu-Hsien Shen
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Chen Chang
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | | | | | - Vasiliki Tileli
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| |
Collapse
|
13
|
Gupta D, Kafle A, Singh M, Kumar S, Nagaiah TC. Real-time screening of Ni xB y bifunctional electrocatalysts for overall NH 3 synthesis via SG-TC SECM. MATERIALS HORIZONS 2024; 11:1212-1222. [PMID: 38116801 DOI: 10.1039/d3mh01939j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Electrochemical ammonia synthesis, which couples oxygen evolution at the anode with nitrogen reduction at the cathode, holds great significance for future food and energy needs. Both of these half-cell reactions determine the overall cell potential and efficiency of the process. However, the employment of different catalysts on either side, due to discrete mechanisms, increases the complexity and material processing costs of the system, where the designing of a bifunctional catalyst active towards both the NRR and OER is of huge significance. Unfortunately, the initial screening of the designed catalysts via physical characterizations, optical methods and other techniques, does not provide details about the electrochemical activity. The scanning electrochemical microscopy (SECM) technique can be useful to screen multi-catalysts at the same time for their electrochemical activities. Herein, we employed the sample generation-tip collection (SG-TC) mode of SECM to screen the designed NixBy catalysts before half-cell investigations, which suggested that the catalyst synthesized via sonochemical reduction (SR), i.e. NixBy (SR), was a better catalyst. This inference was in accordance with the half-cell NRR and OER measurements (FE: 49% for NH3 production, OER overpotential: 300 mV). By virtue of this remarkable bifunctional activity, the NRR-OER coupled full cell was assembled, which initiated the NH3 production at just 1.7 V and produced NH3 (1.08 mg h-1 mgcat-1) at the cathode and O2 (0.81 mg h-1 mgcat-1) at the anode after 2 h of electrolysis at 1.9 V.
Collapse
Affiliation(s)
- Divyani Gupta
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| | - Alankar Kafle
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| | - Man Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| | - Sameer Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| | - Tharamani C Nagaiah
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| |
Collapse
|
14
|
Banerji LC, Jang H, Gardner AM, Cowan AJ. Studying the cation dependence of CO 2 reduction intermediates at Cu by in situ VSFG spectroscopy. Chem Sci 2024; 15:2889-2897. [PMID: 38404396 PMCID: PMC10882457 DOI: 10.1039/d3sc05295h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024] Open
Abstract
The nature of the electrolyte cation is known to have a significant impact on electrochemical reduction of CO2 at catalyst|electrolyte interfaces. An understanding of the underlying mechanism responsible for catalytic enhancement as the alkali metal cation group is descended is key to guide catalyst development. Here, we use in situ vibrational sum frequency generation (VSFG) spectroscopy to monitor changes in the binding modes of the CO intermediate at the electrochemical interface of a polycrystalline Cu electrode during CO2 reduction as the electrolyte cation is varied. A CObridge mode is observed only when using Cs+, a cation that is known to facilitate CO2 reduction on Cu, supporting the proposed involvement of CObridge sites in CO coupling mechanisms during CO2 reduction. Ex situ measurements show that the cation dependent CObridge modes correlate with morphological changes of the Cu surface.
Collapse
Affiliation(s)
- Liam C Banerji
- Department of Chemistry, Stephenson Institute for Renewable Energy, University of Liverpool Liverpool UK
| | - Hansaem Jang
- Department of Chemistry, Stephenson Institute for Renewable Energy, University of Liverpool Liverpool UK
| | - Adrian M Gardner
- Department of Chemistry, Stephenson Institute for Renewable Energy, University of Liverpool Liverpool UK
- Early Career Laser Laboratory, University of Liverpool Liverpool UK
| | - Alexander J Cowan
- Department of Chemistry, Stephenson Institute for Renewable Energy, University of Liverpool Liverpool UK
| |
Collapse
|
15
|
Iglesias van Montfort HP, Li M, Irtem E, Abdinejad M, Wu Y, Pal SK, Sassenburg M, Ripepi D, Subramanian S, Biemolt J, Rufford TE, Burdyny T. Non-invasive current collectors for improved current-density distribution during CO 2 electrolysis on super-hydrophobic electrodes. Nat Commun 2023; 14:6579. [PMID: 37852966 PMCID: PMC10584973 DOI: 10.1038/s41467-023-42348-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Electrochemical reduction of CO2 presents an attractive way to store renewable energy in chemical bonds in a potentially carbon-neutral way. However, the available electrolyzers suffer from intrinsic problems, like flooding and salt accumulation, that must be overcome to industrialize the technology. To mitigate flooding and salt precipitation issues, researchers have used super-hydrophobic electrodes based on either expanded polytetrafluoroethylene (ePTFE) gas-diffusion layers (GDL's), or carbon-based GDL's with added PTFE. While the PTFE backbone is highly resistant to flooding, the non-conductive nature of PTFE means that without additional current collection the catalyst layer itself is responsible for electron-dispersion, which penalizes system efficiency and stability. In this work, we present operando results that illustrate that the current distribution and electrical potential distribution is far from a uniform distribution in thin catalyst layers (~50 nm) deposited onto ePTFE GDL's. We then compare the effects of thicker catalyst layers (~500 nm) and a newly developed non-invasive current collector (NICC). The NICC can maintain more uniform current distributions with 10-fold thinner catalyst layers while improving stability towards ethylene (≥ 30%) by approximately two-fold.
Collapse
Affiliation(s)
| | - Mengran Li
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Erdem Irtem
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands
| | - Maryam Abdinejad
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands
| | - Yuming Wu
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Santosh K Pal
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands
| | - Mark Sassenburg
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands
| | - Davide Ripepi
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands
| | - Siddhartha Subramanian
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands
| | - Jasper Biemolt
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands
| | - Thomas E Rufford
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Thomas Burdyny
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands.
| |
Collapse
|
16
|
Deacon-Price C, da Silva AHM, Santana CS, Koper MTM, Garcia AC. Solvent Effect on Electrochemical CO 2 Reduction Reaction on Nanostructured Copper Electrodes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:14518-14527. [PMID: 37529666 PMCID: PMC10388345 DOI: 10.1021/acs.jpcc.3c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Indexed: 08/03/2023]
Abstract
The electrochemical reduction of CO2 (CO2RR) is a sustainable alternative for producing fuels and chemicals, although the production of highly desired hydrocarbons is still a challenge due to the higher overpotential requirement in combination with the competitive hydrogen evolution reaction (HER). Tailoring the electrolyte composition is a possible strategy to favor the CO2RR over the HER. In this work we studied the solvent effect on the CO2RR on a nanostructured Cu electrode in acetonitrile solvent with different amounts of water. Similar to what has been observed for aqueous media, our online gas chromatography results showed that CO2RR in acetonitrile solvent is also structure-dependent, since nanocube-covered copper (CuNC) was the only surface (in comparison to polycrystalline Cu) capable of producing a detectable amount of ethylene (10% FE), provided there is enough water present in the electrolyte (>500 mM). In situ Fourier Transform Infrared (FTIR) spectroscopy showed that in acetonitrile solvent the presence of CO2 strongly inhibits HER by driving away water from the interface. CO is by far the main product of CO2RR in acetonitrile (>85% Faradaic efficiency), but adsorbed CO is not detected. This suggests that in acetonitrile media CO adsorption is inhibited compared to aqueous media. Remarkably, the addition of water to acetonitrile has little quantitative and almost no qualitative effect on the activity and selectivity of the CO2RR. This indicates that water is not strongly involved in the rate-determining step of the CO2RR in acetonitrile. Only at the highest water concentrations and at the CuNC surface, the CO coverage becomes high enough that a small amount of C2+ product is formed.
Collapse
Affiliation(s)
- Connor Deacon-Price
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Alisson H. M. da Silva
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Cássia S. Santana
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Amanda C. Garcia
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Staerz AF, van Leeuwen M, Priamushko T, Saatkamp T, Endrődi B, Plankensteiner N, Jobbagy M, Pahlavan S, Blom MJW, Janáky C, Cherevko S, Vereecken PM. Effects of Iron Species on Low Temperature CO 2 Electrolyzers. Angew Chem Int Ed Engl 2023:e202306503. [PMID: 37466922 DOI: 10.1002/anie.202306503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Electrochemical energy conversion devices are considered key in reducing CO2 emissions and significant efforts are being applied to accelerate device development. Unlike other technologies, low temperature electrolyzers have the ability to directly convert CO2 into a range of value-added chemicals. To make them commercially viable, however, device efficiency and durability must be increased. Although their design is similar to more mature water electrolyzers and fuel cells, new cell concepts and components are needed. Due to the complexity of the system, singular component optimization is common. As a result, the component interplay is often overlooked. The influence of Fe-species clearly shows that the cell must be considered holistically during optimization, to avoid future issues due to component interference or cross-contamination. Fe-impurities are ubiquitous, and their influence on single components is well-researched. The activity of non-noble anodes has been increased through the deliberate addition of iron. At the same time, however, Fe-species accelerate cathode and membrane degradation. Here, we interpret literature on single components to gain an understanding of how Fe-species influence low temperature CO2 electrolyzers holistically. The role of Fe-species serves to highlight the need for considerations regarding component interplay in general.
Collapse
Affiliation(s)
- Anna F Staerz
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Marieke van Leeuwen
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Tatiana Priamushko
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstraße 1, 91058, Erlangen, Germany
| | - Torben Saatkamp
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Balázs Endrődi
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich sq. 1., 6720, Szeged, Hungary
| | - Nina Plankensteiner
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Matias Jobbagy
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
| | - Sohrab Pahlavan
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Martijn J W Blom
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich sq. 1., 6720, Szeged, Hungary
- eChemicles Zrt., Alsó Kikötő sor 11, 6726, Szeged, Hungary
| | - Serhiy Cherevko
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstraße 1, 91058, Erlangen, Germany
| | - Philippe M Vereecken
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
18
|
Gianolio D, Higham MD, Quesne MG, Aramini M, Xu R, Large AI, Held G, Velasco-Vélez JJ, Haevecker M, Knop-Gericke A, Genovese C, Ampelli C, Schuster ME, Perathoner S, Centi G, Catlow CRA, Arrigo R. Interfacial Chemistry in the Electrocatalytic Hydrogenation of CO 2 over C-Supported Cu-Based Systems. ACS Catal 2023; 13:5876-5895. [PMID: 37180964 PMCID: PMC10167656 DOI: 10.1021/acscatal.3c01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/31/2023] [Indexed: 05/16/2023]
Abstract
Operando soft and hard X-ray spectroscopic techniques were used in combination with plane-wave density functional theory (DFT) simulations to rationalize the enhanced activities of Zn-containing Cu nanostructured electrocatalysts in the electrocatalytic CO2 hydrogenation reaction. We show that at a potential for CO2 hydrogenation, Zn is alloyed with Cu in the bulk of the nanoparticles with no metallic Zn segregated; at the interface, low reducible Cu(I)-O species are consumed. Additional spectroscopic features are observed, which are identified as various surface Cu(I) ligated species; these respond to the potential, revealing characteristic interfacial dynamics. Similar behavior was observed for the Fe-Cu system in its active state, confirming the general validity of this mechanism; however, the performance of this system deteriorates after successive applied cathodic potentials, as the hydrogen evolution reaction then becomes the main reaction pathway. In contrast to an active system, Cu(I)-O is now consumed at cathodic potentials and not reversibly reformed when the voltage is allowed to equilibrate at the open-circuit voltage; rather, only the oxidation to Cu(II) is observed. We show that the Cu-Zn system represents the optimal active ensembles with stabilized Cu(I)-O; DFT simulations rationalize this observation by indicating that Cu-Zn-O neighboring atoms are able to activate CO2, whereas Cu-Cu sites provide the supply of H atoms for the hydrogenation reaction. Our results demonstrate an electronic effect exerted by the heterometal, which depends on its intimate distribution within the Cu phase and confirms the general validity of these mechanistic insights for future electrocatalyst design strategies.
Collapse
Affiliation(s)
- Diego Gianolio
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Michael D. Higham
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, Wales CF10 3AT, U.K.
- UK Catalysis
Hub, Research Complex at Harwell, Rutherford
Appleton Laboratory, R92, Harwell, Oxfordshire OX11 0FA, U.K.
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Matthew G. Quesne
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, Wales CF10 3AT, U.K.
- UK Catalysis
Hub, Research Complex at Harwell, Rutherford
Appleton Laboratory, R92, Harwell, Oxfordshire OX11 0FA, U.K.
| | - Matteo Aramini
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Ruoyu Xu
- Department
of Chemical Engineering, University College
London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Alex I. Large
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Georg Held
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Juan-Jesús Velasco-Vélez
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Michael Haevecker
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Axel Knop-Gericke
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Chiara Genovese
- Department
of ChiBioFarAm, ERIC aisbl and CASPE/INSTM, University of Messina, V. le F.Stagno D’ Alcontres 31, 98166 Messina, Italy
| | - Claudio Ampelli
- Department
of ChiBioFarAm, ERIC aisbl and CASPE/INSTM, University of Messina, V. le F.Stagno D’ Alcontres 31, 98166 Messina, Italy
| | | | - Siglinda Perathoner
- Department
of ChiBioFarAm, ERIC aisbl and CASPE/INSTM, University of Messina, V. le F.Stagno D’ Alcontres 31, 98166 Messina, Italy
| | - Gabriele Centi
- Department
of ChiBioFarAm, ERIC aisbl and CASPE/INSTM, University of Messina, V. le F.Stagno D’ Alcontres 31, 98166 Messina, Italy
| | - C. Richard A. Catlow
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, Wales CF10 3AT, U.K.
- UK Catalysis
Hub, Research Complex at Harwell, Rutherford
Appleton Laboratory, R92, Harwell, Oxfordshire OX11 0FA, U.K.
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Rosa Arrigo
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
- School
of Science, Engineering and Environment, University of Salford, Cockcroft Building, Salford, Greater Manchester M5 4WT, U.K.
| |
Collapse
|
19
|
Deng B, Zhao X, Li Y, Huang M, Zhang S, Dong F. Active site identification and engineering during the dynamic evolution of copper-based catalysts for electrocatalytic CO2 reduction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Popović S, Nazrulla MA, Šket P, Kamal KM, Likozar B, Suhadolnik L, Pavko L, Surca AK, Bele M, Hodnik N. Electrochemically-grown Chloride-free Cu2O Nanocubes Favorably Electroreduce CO2 to Methane: The Interplay of Appropriate Electrochemical Protocol. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Asperti S, Hendrikx R, Gonzalez‐Garcia Y, Kortlever R. Benchmarking the Electrochemical CO
2
Reduction on Polycrystalline Copper Foils: The Importance of Microstructure Versus Applied Potential. ChemCatChem 2022. [DOI: 10.1002/cctc.202200540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Simone Asperti
- Department of Process & Energy, Faculty of Mechanical Maritime and Materials Engineering Delft University of Technology Leeghwaterstraat 39 2628 CB Delft The Netherlands
| | - Ruud Hendrikx
- Department of Materials Science and Engineering Faculty of Mechanical, Maritime and Materials Engineering Delft University of Technology Mekelweg 2 2628 CD Delft The Netherlands
| | - Yaiza Gonzalez‐Garcia
- Department of Materials Science and Engineering Faculty of Mechanical, Maritime and Materials Engineering Delft University of Technology Mekelweg 2 2628 CD Delft The Netherlands
| | - Ruud Kortlever
- Department of Process & Energy, Faculty of Mechanical Maritime and Materials Engineering Delft University of Technology Leeghwaterstraat 39 2628 CB Delft The Netherlands
| |
Collapse
|
22
|
Hochfilzer D, Tiwari A, Clark EL, Bjørnlund AS, Maagaard T, Horch S, Seger B, Chorkendorff I, Kibsgaard J. In Situ Analysis of the Facets of Cu-Based Electrocatalysts in Alkaline Media Using Pb Underpotential Deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1514-1521. [PMID: 35044193 DOI: 10.1021/acs.langmuir.1c02830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Establishing relationships between the surface atomic structure and activity of Cu-based electrocatalysts for CO2 and CO reduction is hindered by probable surface restructuring under working conditions. Insights into these structural evolutions are scarce as techniques for monitoring the surface facets in conventional experimental designs are lacking. To directly correlate surface reconstructions to changes in selectivity or activity, the development of surface-sensitive, electrochemical probes is highly desirable. Here, we report the underpotential deposition of lead over three low index Cu single crystals in alkaline media, the preferred electrolyte for CO reduction studies. We find that underpotential deposition of Pb onto these facets occurs at distinct potentials, and we use these benchmarks to probe the predominant facet of polycrystalline Cu electrodes in situ. Finally, we demonstrate that Cu and Pb form an irreversible surface alloy during underpotential deposition, which limits this method to investigating the surface atomic structure after reaction.
Collapse
Affiliation(s)
- Degenhart Hochfilzer
- SurfCat Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Aarti Tiwari
- SurfCat Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Ezra L Clark
- SurfCat Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Anton Simon Bjørnlund
- SurfCat Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Thomas Maagaard
- SurfCat Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Sebastian Horch
- SurfCat Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Brian Seger
- SurfCat Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Ib Chorkendorff
- SurfCat Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Jakob Kibsgaard
- SurfCat Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| |
Collapse
|