1
|
Xie X, Jiang Y, Yao X, Zhang J, Zhang Z, Huang T, Li R, Chen Y, Li SL, Lan YQ. A solvent-free processed low-temperature tolerant adhesive. Nat Commun 2024; 15:5017. [PMID: 38866776 PMCID: PMC11169673 DOI: 10.1038/s41467-024-49503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
Ultra-low temperature resistant adhesive is highly desired yet scarce for material adhesion for the potential usage in Arctic/Antarctic or outer space exploration. Here we develop a solvent-free processed low-temperature tolerant adhesive with excellent adhesion strength and organic solvent stability, wide tolerable temperature range (i.e. -196 to 55 °C), long-lasting adhesion effect ( > 60 days, -196 °C) that exceeds the classic commercial hot melt adhesives. Furthermore, combine experimental results with theoretical calculations, the strong interaction energy between polyoxometalate and polymer is the main factor for the low-temperature tolerant adhesive, possessing enhanced cohesion strength, suppressed polymer crystallization and volumetric contraction. Notably, manufacturing at scale can be easily achieved by the facile scale-up solvent-free processing, showing much potential towards practical application in Arctic/Antarctic or planetary exploration.
Collapse
Affiliation(s)
- Xiaoming Xie
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, China
| | - Yulian Jiang
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, China
| | - Xiaoman Yao
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China
| | - Jiaqi Zhang
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zilin Zhang
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, China
| | - Taoping Huang
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China
| | - Runhan Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China.
| | - Yifa Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China.
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China.
| |
Collapse
|
2
|
Chen M, Chen T, Bai J, He S, Luo M, Zeng Y, Peng W, Zhao Y, Wang J, Zhu X, Zhi W, Weng J, Zhang K, Zhang X. A Nature-Inspired Versatile Bio-Adhesive. Adv Healthc Mater 2023; 12:e2301560. [PMID: 37548628 DOI: 10.1002/adhm.202301560] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Indexed: 08/08/2023]
Abstract
The application of most hydrogel bio-adhesives is greatly limited due to their high swelling, low underwater adhesion, and single function. Herein, a spatial multi-level physical-chemical and bio-inspired in-situ bonding strategy is proposed, to develop a multifunctional hydrogel bio-glue using polyglutamic acid (PGA), tyramine hydrochloride (TYR), and tannic acid (TA) as precursors and 4-(4,6-dimethoxytriazine-2-yl) -4-methylmorpholine hydrochloride(DMTMM) as condensation agent, which is used for tissue adhesion, hemostasis and repair. By introducing TYR and TA into the PGA chain, it is demonstrated that not only can the strong adhesion of bio-glue to the surface of various fresh tissues and wet materials be realized through the synergistic effect of spatial multi-level physical and chemical bonding, but also this glue can be endowed with the functions of anti-oxidation and hemostasis. The excellent performance of such bio-glue in the repair of the wound, liver, and cartilage is achieved, showing a great potential in clinical application for such bio-glue. This study will open up a brand-new avenue for the development of multifunctional hydrogel biological adhesive.
Collapse
Affiliation(s)
- Mingxia Chen
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Taijun Chen
- Chengdu University of Traditional Chinese Medicine, School of Intelligent Medicine, Chengdu, 611137, China
| | - Jiafan Bai
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Siyuan He
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Minyue Luo
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Yili Zeng
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Wenzhen Peng
- Department of Biochemistry and Molecular Biology, College of Basic and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yuancong Zhao
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Jianxin Wang
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Wei Zhi
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Jie Weng
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
3
|
Li F, Gu W, Gao Q, Tan Y, Li C, Sonne C, Li J, Kim KH. Scalable Underwater Adhesives with High-Strength, Long-Term, and Harsh-Environment Adhesion Enabled by Heterocyclic Chemistry. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37925-37935. [PMID: 37493476 DOI: 10.1021/acsami.3c07112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Developing scalable and high-performance underwater adhesives is important in various biomedical and industrial applications. However, despite massive efforts, the realization of such adhesives remains a challenging task, as mainly imposed by the difficulty in balancing the interfacial and bulk properties via an efficient way. Here, we report a facile yet effective strategy to construct a novel underwater adhesive with multiple advantaged performances by virtue of heterocyclic chemistry. This adhesive is designed with the cooperation of a heterocycle-based versatile adhesive functionality and an eco-friendly hydrophilic matrix with cross-linkable sites, which allows water absorption to destroy hydration layer, diverse molecular interactions to enhance interfacial adhesion, and abundant covalent crosslinks to strengthen bulk cohesion. Such a rational design endows the adhesive with strong underwater adhesion (up to 1.16 MPa for wood and 0.36 MPa for poly(tetrafluoroethylene) (PTFE)), long-term durability (maintaining pristine strength even after 4 months), and harsh-environment stability (salt, acidic/alkaline, low/high-temperature solutions). This strategy is also generic to derive more adhesive formulas, which offers a new direction for designing the next-generation underwater adhesives with high performance and scalability for practical applications.
Collapse
Affiliation(s)
- Feng Li
- MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Weidong Gu
- State Key Laboratory of Bio-Fibers and Eco-Textiles College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qiang Gao
- MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Yi Tan
- MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Cheng Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Jianzhang Li
- MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Korea
| |
Collapse
|
4
|
Jin M, Tao C, Hu X, Liu B, Ma C, Wu Z, Yao H, Wang DA. An Instant Underwater Tissue Adhesive Composed of Catechin-Chondroitin Sulfate and Cholesterol-Polyethyleneimine. Adv Healthc Mater 2023; 12:e2202814. [PMID: 36707970 DOI: 10.1002/adhm.202202814] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/28/2022] [Indexed: 01/29/2023]
Abstract
Due to the safety issue and poor underwater adhesion of current commercially available bioadhesives, they are hard to apply to in vivo physiological environments and more diverse medical use conditions. In this study, a novel and facile bioadhesive for underwater medical applications are designed based on the coacervation of electrostatic interactions and hydrophobic interactions, with the introduction of catechin as a provider of catechol moieties for adhesion to surrounding tissues. The orange-colored bio-adhesive, named PcC, is generated within seconds by mixing catechin-modified chondroitin sulfate and cholesterol chloroformate-modified polyethyleneimine with agitation. In vitro mechanical measurements prove that this novel PcC bio-adhesive is superior in underwater adhesion performance when applied to cartilage. Animal experiments in a rat mastectomy model and rat cartilage graft implantation model demonstrate its potential for diverse medical purposes, such as closing surgical incisions, reducing the formation of seroma, and tissue adhesive applied in orthopedic or cartilage surgery.
Collapse
Affiliation(s)
- Min Jin
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.,Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, P. R. China
| | - Chao Tao
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, P. R. China
| | - Xu Hu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Bangheng Liu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.,Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, P. R. China
| | - Cheng Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.,Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, P. R. China
| | - Zhonglian Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.,Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, P. R. China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
5
|
Vahdati M, Hourdet D, Creton C. Soft Underwater Adhesives based on Weak Molecular Interactions. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
6
|
In situ crosslinking of polyoxometalate-polymer nanocomposites for robust high-temperature proton exchange membranes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|