1
|
Zhang X, Chang M, Wang D, Wang L, Yang X, Ben Z, Zhang Q, Lu Y. Enhanced photocatalytic performance in seawater of donor-acceptor type conjugated polymers through introduction of alkoxy groups in the side chain. J Colloid Interface Sci 2025; 682:1151-1163. [PMID: 39671949 DOI: 10.1016/j.jcis.2024.11.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
Previous studies have demonstrated that the donor (D)-acceptor (A) structure enables conjugated polymers (CPs) to effectively inhibit charge recombination, reduce exciton binding energy to a minimum, and broaden the light absorption spectrum, ultimately enhancing photocatalytic activity. Besides, side chain engineering is an effective approach to enhance photocatalytic performance by regulating surface chemistry and energy band structure of CPs. Herein, three D-A type CPs, namely TPD-T, TPD-MOT and TPD-DOT, were designed and synthesized using thieno[3,4-c]pyrrole-4,6-dione (TPD) as A units and thiophene with different alkyl/alkoxy groups side chain (as 3-octylthiophene (T), 3-methoxythiophene (MOT) and 3,4-ethylenedioxythiophene (DOT)) as D units, via an atom- and step-economic CH/CH cross-coupling polycondensation. The photocatalytic hydrogen production performance of these polymers driven by visible light was systematically evaluated in pure water and natural seawater. The results show that the hydrogen evolution rates (HERs) of the as-synthesized CPs in pure water and natural seawater significantly increased by 5 and 7 times, respectively, when the number of alkoxy groups on the side chain of polymers increased from 0 to 2. In particular, HERs of three polymers in natural seawater are distinctly better than that in pure water. Further, the steady-state photoluminescence (PL), time-resolved fluorescence decay, and electrochemical impedance spectroscopy (EIS) studies combined with density functional theory (DFT) simulations were carried out to figure out the possible mechanism of the enhanced photocatalytic performance of CPs by side chain engineering. This work indicates that side chain engineering contributes significantly to determine the photocatalytic activity of D-A polymers-based photocatalysts, and could serve as guidelines for organic photocatalysts with highly efficient hydrogen evolution performance.
Collapse
Affiliation(s)
- Xinjuan Zhang
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Menghan Chang
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Di Wang
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Lin Wang
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xuan Yang
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M139PL, United Kingdom
| | - Zhaohang Ben
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qiang Zhang
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Yan Lu
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
2
|
Hasi QM, Yu J, Guo Y, Hu S, Jiang S, Xiao C, Li A, Chen L. Study on photocatalytic degradation and antibacterial properties of conjugated microporous polymers/TiO 2 composite membranes. J Colloid Interface Sci 2025; 679:811-823. [PMID: 39393157 DOI: 10.1016/j.jcis.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Conjugated microporous polymers (CMPs) are widely used in the field of photocatalysis due to their unique conjugated structures and various synthesis methods. Herein, we report the design and synthesis of conjugated microporous polymers hollow spheres (CMPs-HS) superhydrophilic modified by acetylcysteine (CMPs-HS-S) and compounded with the inorganic semiconductor material titanium dioxide (CMPs-HS-S/TiO2) for efficient photocatalytic degradation. To facilitate recycling, the composite membrane material was prepared by combining the materials mentioned above with PVDF membrane. The composite membrane materials had good hydrophilic and photocatalytic properties. Under visible light, the degradation rate of tetracycline (TC) (10 mg/L 180 min) reached 90 %, and the bactericidal rates for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 89 % and 99.99 %, respectively. The efficient photocatalytic performance of the composite membranes could be attributed to the hollow sphere structure of CMPs and the role of TiO2 as a photogenic electron transfer platform. Additionally, the hydrophilicity of the membrane also helped to accelerate the occurrence of photocatalytic reactions. After electron paramagnetic resonance (EPR) detection, h+, 1O2 and O2- were proved to be important reactive substances, which played a major role in degradation. These studies reflect the versatility of CMPs-based photocatalysts and provide a new idea for the future development of CMPs-based photocatalysts.
Collapse
Affiliation(s)
- Qi-Meige Hasi
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu ProvinceGa, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, Lanzhou, Gansu 730030, PR China
| | - Jiale Yu
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu ProvinceGa, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, Lanzhou, Gansu 730030, PR China
| | - Yuyan Guo
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu ProvinceGa, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, Lanzhou, Gansu 730030, PR China
| | - Sanshan Hu
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu ProvinceGa, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, Lanzhou, Gansu 730030, PR China
| | - Shuai Jiang
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu ProvinceGa, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, Lanzhou, Gansu 730030, PR China
| | - Chaohu Xiao
- Center of Experiment, Northwest Minzu University, Lanzhou, Gansu 730030, PR China
| | - An Li
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730030, PR China.
| | - Lihua Chen
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu ProvinceGa, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, Lanzhou, Gansu 730030, PR China.
| |
Collapse
|
3
|
Liu Z, Gao W, Liu L, Gao Y, Zhang C, Chen L, Lv F, Xi J, Du T, Luo L, Zhuo J, Zhang W, Ji Y, Shen Y, Liu W, Wang J, Luo M, Guo S. Spin polarization induced by atomic strain of MBene promotes the ·O 2- production for groundwater disinfection. Nat Commun 2025; 16:197. [PMID: 39747146 PMCID: PMC11696085 DOI: 10.1038/s41467-024-55626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Superbugs in groundwater are posing severe health risks through waterborne pathways. An emerging approach for green disinfection lies at photocatalysis, which levers the locally generated superoxide radical (·O2-) for neutralization. However, the spin-forbidden feature of O2 hinders the photocatalytic generation of active ·O2-, and thus greatly limited the disinfection efficiency, especially for real groundwater with a low dissolved oxygen (DO) concentration. Herein, we report a class of strained Mo4/3B2-xTz MBene (MB) with enhanced adsorption/activation of molecular O2 for photocatalytic disinfection, and find the strain induced spin polarization of In2S3/Mo4/3B2-xTz (IS/MB) can facilitate the spin-orbit hybridization of Mo sites and O2 to overcome the spin-forbidden of O2, which results in a 16.59-fold increase in ·O2- photocatalytic production in low DO condition (2.46 mg L-1). In particular, we demonstrate an In2S3/Mo4/3B2-xTz (50 mg)-based continuous-flow-disinfection system stably operates over 62 h and collects 37.2 L bacteria-free groundwater, which represents state-of-the-art photodisinfection materials for groundwater disinfection. Most importantly, the disinfection capacity of the continuous-flow-disinfection system is 25 times higher than that of commercial sodium hypochlorite (NaOCl), suggesting the practical potential for groundwater purification.
Collapse
Affiliation(s)
- Zhaoli Liu
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China
| | - Wenzhe Gao
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China
| | - Lizhi Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xian, China
| | - Yixuan Gao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China
| | - Long Chen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China
| | - Fan Lv
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Jiafeng Xi
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China
| | - Linpin Luo
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China
| | - Yizhong Shen
- Hefei University of Technology, School of Food & Biological Engineering, 230009, Hefei, China.
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China.
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, China.
| |
Collapse
|
4
|
Long M, Huang C, Huang X, Yang L, Chen L, Sun K, Wang C, Zhang L, Zhang L, Cai S, Yao S, Zhu H, Yang T, Zou B, Liu T. Efficient photodegradation of carbamazepine by organocatalysts incorporating a third component with a more complementary absorption spectrum. MATERIALS HORIZONS 2024; 11:6476-6485. [PMID: 39392274 DOI: 10.1039/d4mh01030b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Carbamazepine, recognized as one of the most prevalent pharmaceuticals, has attracted considerable attention due to its potential impact on ecosystems and human health. In response, this work synthesized and characterized a novel environmentally friendly and cost-effective organic semiconductor photocatalyst PM6:Y6:ITCPTC loaded with coconut shell charcoal, and then investigated its performance for photocatalytic removal. Remarkably, carbamazepine demonstrated a photodegradation efficiency exceeding 99% within a mere 20 minutes of exposure to one sunlight intensity, and also showed good effectiveness under a low light intensity of 50 W. The catalyst exhibited exceptional reusability and stability, maintaining degradation efficiency between 95-99% over 25 cycles. The high photocatalytic activity of PM6:Y6:ITCPTC is primarily attributed to the incorporation of the third component (named ITCPTC), which enhances exciton dissociation and carrier transfer, generating superoxide radicals, electrons, and holes. Furthermore, the plausible degradation pathway of carbamazepine was proposed based on the measured intermediates and density functional theory calculations.
Collapse
Affiliation(s)
- Min Long
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
- Department of Biochemistry and Cell Biology, YouJiang Medical University for Nationalities, Baise City, Guangxi Zhuang Autonomous Region 533000, China
| | - Ciyuan Huang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Xiao Huang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Linji Yang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Liangsheng Chen
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Ke Sun
- Department of Biochemistry and Cell Biology, YouJiang Medical University for Nationalities, Baise City, Guangxi Zhuang Autonomous Region 533000, China
| | - Caiyun Wang
- Guangxi Vocational & Technical Institute of Industry, Nanning 530001, Guangxi, P. R. China.
| | - Liying Zhang
- Guangxi Vocational & Technical Institute of Industry, Nanning 530001, Guangxi, P. R. China.
| | - Libin Zhang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Songlin Cai
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Shangfei Yao
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Hongxiang Zhu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Tao Yang
- Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Portugal
| | - Bingsuo Zou
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Tao Liu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
- Department of Biochemistry and Cell Biology, YouJiang Medical University for Nationalities, Baise City, Guangxi Zhuang Autonomous Region 533000, China
| |
Collapse
|
5
|
Li Y, Wan S, Liang W, Cheng B, Wang W, Xiang Y, Yu J, Cao S. D-A Conjugated Polymer/CdS S-Scheme Heterojunction with Enhanced Interfacial Charge Transfer for Efficient Photocatalytic Hydrogen Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312104. [PMID: 38441363 DOI: 10.1002/smll.202312104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/08/2024] [Indexed: 08/02/2024]
Abstract
Owing to the improved charge separation and maximized redox capability of the system, Step-scheme (S-scheme) heterojunctions have garnered significant research attention for efficient photocatalysis of H2 evolution. In this work, an innovative linear donor-acceptor (D-A) conjugated polymer fluorene-alt-(benzo-thiophene-dione) (PFBTD) is coupled with the CdS nanosheets, forming the organic-inorganic S-scheme heterojunction. The CdS/PFBTD (CP) composite exhibits an impressed hydrogen production rate of 7.62 mmol g-1 h-1 without any co-catalysts, which is ≈14 times higher than pristine CdS. It is revealed that the outstanding photocatalytic performance is attributed to the formation of rapid electron transfer channels through the interfacial Cd─O bonding as evidenced by the density functional theory (DFT) calculations and in situ X-ray photoelectron spectroscopy (XPS) analysis. The charge transfer mechanism involved in S-scheme heterojunctions is further investigated through the photo-irradiated Kelvin probe force microscopy (KPFM) analysis. This work provides a new point of view on the mechanism of interfacial charge transfer and points out the direction of designing superior organic-inorganic S-scheme heterojunction photocatalysts.
Collapse
Affiliation(s)
- Yaqi Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Hubei Technology Innovation Center for Advanced Composites, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Sijie Wan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Hubei Technology Innovation Center for Advanced Composites, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Weichen Liang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Hubei Technology Innovation Center for Advanced Composites, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Hubei Technology Innovation Center for Advanced Composites, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wang Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Hubei Technology Innovation Center for Advanced Composites, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yao Xiang
- Hospital of Wuhan University of Technology, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Shaowen Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Hubei Technology Innovation Center for Advanced Composites, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
6
|
Ma S, Kong J, Luo X, Xie J, Zhou Z, Bai X. In-situ surface bismuth assembled amorphous BiOI nanoplatforms for enhancing NIR-triggered bacterial inactivation. Sep Purif Technol 2024; 341:126932. [DOI: 10.1016/j.seppur.2024.126932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
|
7
|
Wang X, Li X, Che G, Zhu E, Guo H, Charpentier PA, Xu WZ, Liu C. Enhanced Photocatalytic Properties of All-Organic IDT-COOH/O-CN S-Scheme Heterojunctions Through π-π Interaction and Internal Electric Field. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6367-6381. [PMID: 38270091 DOI: 10.1021/acsami.3c16123] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Herein, we present a distinct methodology for the in situ electrostatic assembly method for synthesizing a conjugated (IDT-COOH)/oxygen-doped g-C3N4 (O-CN) S-scheme heterojunction. The electron delocalization effect due to π-π interactions between O-CN and self-assembled IDT-COOH favors interfacial charge separation. The self-assembled IDT-COOH/O-CN exhibits a broadened visible absorption to generate more charge carriers. The internal electric field between the IDT-COOH and the O-CN interface provides a directional charge-transfer channel to increase the utilization of photoinduced charge carriers. Moreover, the active species (•O2-, h+, and 1O2) produced by IDT-COOH/O-CN under visible light play important roles in photocatalytic disinfection. The optimum 40% IDT-COOH/O-CN can kill 7-log of methicillin-resistant Staphylococcus aureus (MRSA) cells in 2 h and remove 88% tetracycline (TC) in 5 h, while O-CN only inactivates 1-log of MRSA cells and degrades 40% TC. This work contributes to a promising method to fabricate all-organic g-C3N4-based S-scheme heterojunction photocatalysts with a wide range of optical responses and enhanced exciton dissociation.
Collapse
Affiliation(s)
- Xin Wang
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping 136000, Jilin, P. R. China
| | - Xiaohuan Li
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping 136000, Jilin, P. R. China
| | - Guangbo Che
- College of Chemistry, Baicheng Normal University, Baicheng 137000, Jilin, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, Jilin, P. R. China
| | - Enwei Zhu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, Jilin, P. R. China
| | - Haiyong Guo
- Department of Biological Science, School of Life Science, Jilin Normal University, Siping 136000, Jilin, P. R. China
| | - Paul A Charpentier
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London N6A 5B9, Ontario, Canada
| | - William Z Xu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London N6A 5B9, Ontario, Canada
| | - Chunbo Liu
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping 136000, Jilin, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, Jilin, P. R. China
| |
Collapse
|
8
|
Liu H, Zhao F, Ming S, Du Y, Zhao J, Zhang W, Zhang J. Effect of substitution position of carbazole based conjugated polymers on the photocatalytic hydrogen evolution activities of conjugated polymer/g-C3N4 heterojunction catalysts. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Huang S, Shan G, Qin C, Liu S. Polymerization-Enhanced Photophysical Performances of AIEgens for Chemo/Bio-Sensing and Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010078. [PMID: 36615271 PMCID: PMC9822127 DOI: 10.3390/molecules28010078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
AIE polymers have been extensively researched in the fields of OLEDs, sensing, and cancer treatment since its first report in 2003, which have achieved numerous breakthroughs during the years. In comparison with small molecules, it can simultaneously combine the unique advantages of AIE materials and the polymer itself, to further enhance their corresponding photophysical performances. In this review, we enumerate and discuss the common construction strategies of AIE-active polymers and summarize the progress of research on polymerization enhancing luminescence, photosensitization, and room-temperature phosphorescence (RTP) with their related applications in chemo/bio-sensing and therapy. To conclude, we also discuss current challenges and prospects of the field for future development.
Collapse
Affiliation(s)
- Shanshan Huang
- National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Guogang Shan
- National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun 130024, China
- Correspondence: (G.S.); (C.Q.); (S.L.)
| | - Chao Qin
- National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun 130024, China
- Correspondence: (G.S.); (C.Q.); (S.L.)
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Correspondence: (G.S.); (C.Q.); (S.L.)
| |
Collapse
|