1
|
Kim Y, Kim H, Lee H, Lee TH, Cho HH. Organic semiconductor bulk heterojunctions for solar-to-chemical conversion: recent advances and challenges. NANOSCALE 2025; 17:1889-1921. [PMID: 39688026 DOI: 10.1039/d4nr03938f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Solar fuel production involving the conversion of solar energy directly into chemical fuels such as hydrogen and valuable chemicals using photoelectrochemical (PEC) cells and photocatalysts (PCs) offers a promising avenue for sustainable energy while reducing carbon emissions. However, existing PEC cells and PCs fall short of economic viability due to their low solar-to-chemical (STC) conversion efficiency associated with the employed semiconductors, highlighting the clear need for identifying ideal semiconductor materials. Organic semiconductors (OSs), π-conjugated carbon-based materials, have emerged as promising candidates for enhancing STC conversion efficiency due to their remarkable optoelectrical properties, which can be readily adjustable through molecular engineering. In particular, the use of OS bulk heterojunctions (BHJs) consisting of intermixed electron-donating and electron-accepting OSs facilitates efficient charge generation under illumination, thereby contributing to enhanced STC conversion efficiency. This review explores the recent advancements in the rational design of OS materials and approaches aimed at enhancing the performance of BHJ-based PEC cells and PCs for solar-driven production of hydrogen and valuable chemicals. The discussion also introduces new perspectives to address the remaining challenges in this field.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan 46241, Republic of Korea.
| | - Hoon Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Hyeongyu Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tack Ho Lee
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan 46241, Republic of Korea.
| | - Han-Hee Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Ahmad A, Noor AE, Anwar A, Majeed S, Khan S, Ul Nisa Z, Ali S, Gnanasekaran L, Rajendran S, Li H. Support based metal incorporated layered nanomaterials for photocatalytic degradation of organic pollutants. ENVIRONMENTAL RESEARCH 2024; 260:119481. [PMID: 38917930 DOI: 10.1016/j.envres.2024.119481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/22/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
An effective approach to producing sophisticated miniaturized and nanoscale materials involves arranging nanomaterials into layered hierarchical frameworks. Nanostructured layered materials are constructed to possess isolated propagation assets, massive surface areas, and envisioned amenities, making them suitable for a variety of established and novel applications. The utilization of various techniques to create nanostructures adorned with metal nanoparticles provides a secure alternative or reinforcement for the existing physicochemical methods. Supported metal nanoparticles are preferred due to their ease of recovery and usage. Researchers have extensively studied the catalytic properties of noble metal nanoparticles using various selective oxidation and hydrogenation procedures. Despite the numerous advantages of metal-based nanoparticles (NPs), their catalytic potential remains incompletely explored. This article examines metal-based nanomaterials that are supported by layers, and provides an analysis of their manufacturing, procedures, and synthesis. This study incorporates both 2D and 3D layered nanomaterials because of their distinctive layered architectures. This review focuses on the most common metal-supported nanocomposites and methodologies used for photocatalytic degradation of organic dyes employing layered nanomaterials. The comprehensive examination of biological and ecological cleaning and treatment techniques discussed in this article has paved the way for the exploration of cutting-edge technologies that can contribute to the establishment of a sustainable future.
Collapse
Affiliation(s)
- Awais Ahmad
- Department of Chemistry, The University of Lahore, Lahore Pakistan
| | - Arsh E Noor
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Aneela Anwar
- Biomedical Engineering Department, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Safia Khan
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan, 250101, China
| | - Zaib Ul Nisa
- Department of Zoology, Government College University Faisalabad, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Hu Li
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan, 250101, China
| |
Collapse
|
3
|
Zhang Z, Luo Y, Ma Y, Zhou Y, Zhu D, Shen W, Liu J. Photocatalytic manipulation of Ca 2+ signaling for regulating cellular and animal behaviors via MOF-enabled H 2O 2 generation. SCIENCE ADVANCES 2024; 10:eadl0263. [PMID: 38640246 PMCID: PMC11029810 DOI: 10.1126/sciadv.adl0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
The in situ generation of H2O2 in cells in response to external stimulation has exceptional advantages in modulating intracellular Ca2+ dynamics, including high controllability and biological safety, but has been rarely explored. Here, we develop photocatalyst-based metal-organic frameworks (DCSA-MOFs) to modulate Ca2+ responses in cells, multicellular spheroids, and organs. By virtue of the efficient photocatalytic oxygen reduction to H2O2 without sacrificial agents, photoexcited DCSA-MOFs can rapidly trigger Ca2+ outflow from the endoplasmic reticulum with single-cell precision in a repeatable and controllable manner, enabling the propagation of intercellular Ca2+ waves (ICW) over long distances in two-dimensional and three-dimensional cell cultures. After photoexcitation, ICWs induced by DCSA-MOFs can activate neural activities in the optical tectum of tadpoles and thighs of spinal frogs, eliciting the corresponding motor behaviors. Our study offers a versatile optical nongenetic modulation technique that enables remote, repeatable, and controlled manipulation of cellular and animal behaviors.
Collapse
Affiliation(s)
- Zherui Zhang
- College of Material, Chemistry, and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuhao Luo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Yuanhong Ma
- College of Material, Chemistry, and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Yaofeng Zhou
- Westlake University, Shilongshan Rd. Cloud Town, Xihu District, Hangzhou, Zhejiang, China
| | - Dingcheng Zhu
- College of Material, Chemistry, and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Junqiu Liu
- College of Material, Chemistry, and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
4
|
Koul K, Jawanda IK, Soni T, Singh P, Sharma D, Kumari S. Quantum dots: a next generation approach for pathogenic microbial biofilm inhibition; mechanistic insights, existing challenges, and future potential. Arch Microbiol 2024; 206:158. [PMID: 38480540 DOI: 10.1007/s00203-024-03919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 04/16/2024]
Abstract
Quantum Dots (QDs) have emerged as versatile nanomaterials with origins spanning organic, inorganic, and natural sources, revolutionizing various biomedical applications, particularly in combating pathogenic biofilm formation. Biofilms, complex structures formed by microbial communities enveloped in exopolysaccharide matrices, pose formidable challenges to traditional antibiotics due to their high tolerance and resistance, exacerbating inefficacy issues in antibiotic treatments. QDs offer a promising solution, employing physical mechanisms like photothermal or photodynamic therapy to disrupt biofilms. Their efficacy is noteworthy, with lower susceptibility to resistance development and broad-spectrum action as compared to conventional antibiotic methods. The stability and durability of QDs ensure sustained biofilm activity, even in challenging environmental conditions. This comprehensive review delves into the synthesis, properties, and applications of Carbon Quantum Dots (CQDs), most widely used QDs, showcasing groundbreaking developments that position these nanomaterials at the forefront of cutting-edge research and innovation. These nanomaterials exhibit multifaceted mechanisms, disrupting cell walls and membranes, generating reactive oxygen species (ROS), and binding to nucleic materials, effectively inhibiting microbial proliferation. This opens transformative possibilities for healthcare interventions by providing insights into biofilm dynamics. However, challenges in size control necessitate ongoing research to refine fabrication techniques, ensure defect-free surfaces, and optimize biological activity. QDs emerge as microscopic yet potent tools, promising to contribute to a brighter future where quantum wonders shape innovative solutions to persistently challenging issues posed by pathogenic biofilms. Henceforth, this review aims to explore QDs as potential agents for inhibiting pathogenic microbial biofilms, elucidating the underlying mechanisms, addressing the current challenges, and highlighting their promising future potential.
Collapse
Affiliation(s)
- Khyati Koul
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | | | - Thomson Soni
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Pranjali Singh
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Divyani Sharma
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Seema Kumari
- Department of Microbiology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
5
|
Zdražil L, Baďura Z, Langer M, Kalytchuk S, Panáček D, Scheibe M, Kment Š, Kmentová H, Thottappali MA, Mohammadi E, Medveď M, Bakandritsos A, Zoppellaro G, Zbořil R, Otyepka M. Magnetic Polaron States in Photoluminescent Carbon Dots Enable Hydrogen Peroxide Photoproduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206587. [PMID: 37038085 DOI: 10.1002/smll.202206587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/17/2023] [Indexed: 05/06/2023]
Abstract
Photoactivation of aspartic acid-based carbon dots (Asp-CDs) induces the generation of spin-separated species, including electron/hole (e- /h+ ) polarons and spin-coupled triplet states, as uniquely confirmed by the light-induced electron paramagnetic resonance spectroscopy. The relative population of the e- /h+ pairs and triplet species depends on the solvent polarity, featuring a substantial stabilization of the triplet state in a non-polar environment (benzene). The electronic properties of the photoexcited Asp-CDs emerge from their spatial organization being interpreted as multi-layer assemblies containing a hydrophobic carbonaceous core and a hydrophilic oxygen and nitrogen functionalized surface. The system properties are dissected theoretically by density functional theory in combination with molecular dynamics simulations on quasi-spherical assemblies of size-variant flakelike model systems, revealing the importance of size dependence and interlayer effects. The formation of the spin-separated states in Asp-CDs enables the photoproduction of hydrogen peroxide (H2 O2 ) from water and water/2-propanol mixture via a water oxidation reaction.
Collapse
Affiliation(s)
- Lukáš Zdražil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Zdeněk Baďura
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Michal Langer
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Sergii Kalytchuk
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - David Panáček
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Magdalena Scheibe
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Štěpán Kment
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Hana Kmentová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | | | - Elmira Mohammadi
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Miroslav Medveď
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
- IT4Innovations, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| |
Collapse
|
6
|
Zhang C, Chen M, Pan Y, Li Y, Wang K, Yuan J, Sun Y, Zhang Q. Carbon Nanodots Memristor: An Emerging Candidate toward Artificial Biosynapse and Human Sensory Perception System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207229. [PMID: 37072642 PMCID: PMC10238223 DOI: 10.1002/advs.202207229] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/09/2023] [Indexed: 05/03/2023]
Abstract
In the era of big data and artificial intelligence (AI), advanced data storage and processing technologies are in urgent demand. The innovative neuromorphic algorithm and hardware based on memristor devices hold a promise to break the von Neumann bottleneck. In recent years, carbon nanodots (CDs) have emerged as a new class of nano-carbon materials, which have attracted widespread attention in the applications of chemical sensors, bioimaging, and memristors. The focus of this review is to summarize the main advances of CDs-based memristors, and their state-of-the-art applications in artificial synapses, neuromorphic computing, and human sensory perception systems. The first step is to systematically introduce the synthetic methods of CDs and their derivatives, providing instructive guidance to prepare high-quality CDs with desired properties. Then, the structure-property relationship and resistive switching mechanism of CDs-based memristors are discussed in depth. The current challenges and prospects of memristor-based artificial synapses and neuromorphic computing are also presented. Moreover, this review outlines some promising application scenarios of CDs-based memristors, including neuromorphic sensors and vision, low-energy quantum computation, and human-machine collaboration.
Collapse
Affiliation(s)
- Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSchool of Physical Science and TechnologySuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Mohan Chen
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSchool of Physical Science and TechnologySuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Yelong Pan
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSchool of Physical Science and TechnologySuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSchool of Physical Science and TechnologySuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Kuaibing Wang
- Jiangsu Key Laboratory of Pesticide SciencesDepartment of ChemistryCollege of ScienceNanjing Agricultural UniversityNanjing210095China
| | - Junwei Yuan
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Yanqiu Sun
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Qichun Zhang
- Department of Materials Science and EngineeringDepartment of Chemistry and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee AvenueHong Kong999077China
| |
Collapse
|
7
|
Ma R, Jiang J, Ya Y, Lin Y, Zhou Y, Wu Y, Tan X, Huang K, Du F, Xu J. A carbon dot-based nanoscale covalent organic framework as a new emitter combined with a CRISPR/Cas12a-mediated electrochemiluminescence biosensor for ultrasensitive detection of bisphenol A. Analyst 2023; 148:1362-1370. [PMID: 36857724 DOI: 10.1039/d3an00024a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Exploring new highly efficient electrochemiluminescence (ECL) luminophores is a necessary condition for developing ultrasensitive ECL biosensors. Therefore, a luminescent carbon dot-based covalent organic framework (CD-COF) was prepared using aldehyde-based carbon dots (CDs) and 1,3,5-tris (4-aminophenyl) benzene (TPB). Because the CD-COF made the regular arrangement of CDs conducive to improving the ECL response, CD-COF had a higher ECL intensity and efficiency than CDs. What's more, the ECL intensity of the CD-COF/S2O82-/Bu4N+ system was about 2.98, 7.50, and 28.08 times higher than those of the CD-COF/S2O82-, CDs/S2O82- and S2O82- systems, respectively. Considering the remarkable ECL performance, the CD-COF/S2O82-/Bu4N+ system was employed combined with the CRISPR/Cas12a trans-cutting strategy to construct an "off-on" ECL biosensor for BPA detection. The proposed ECL biosensor exhibited excellent performance with a wide linear range from 1.0 × 10-14 mol L-1 to 1.0 × 10-5 mol L-1 with a low detection limit of 2.21 fM (S/N = 3) under the optimized conditions. The biosensor demonstrated that CD-COF can be used as an efficient ECL emitter, thus expanding the application field of COFs. In addition, the good stability and specificity of the biosensor enabled the rapid detection of BPA, which will provide valuable insights into promising ultrasensitive ECL biosensors.
Collapse
Affiliation(s)
- Rongxian Ma
- School of Chemistry and Chemical Engineering, Guangxi Minzu University; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products; Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products; Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530006, China.
| | - Jiaxuan Jiang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products; Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products; Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530006, China.
| | - Yanfei Ya
- School of Chemistry and Chemical Engineering, Guangxi Minzu University; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products; Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products; Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530006, China.
| | - Yu Lin
- School of Chemistry and Chemical Engineering, Guangxi Minzu University; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products; Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products; Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530006, China.
| | - Yuyi Zhou
- School of Chemistry and Chemical Engineering, Guangxi Minzu University; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products; Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products; Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530006, China.
| | - Yeyu Wu
- School of Chemistry and Chemical Engineering, Guangxi Minzu University; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products; Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products; Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530006, China.
| | - Xuecai Tan
- School of Chemistry and Chemical Engineering, Guangxi Minzu University; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products; Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products; Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530006, China.
| | - KeJing Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products; Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products; Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530006, China.
| | - Fangkai Du
- School of Chemistry and Chemical Engineering, Guangxi Minzu University; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products; Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products; Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530006, China.
| | - Jingjuan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
8
|
Barakat NAM, Gamil A, Ashour I, Khalil KA. Extraction of Novel Effective Nanocomposite Photocatalyst from Corn Stalk for Water Photo Splitting under Visible Light Radiation. Polymers (Basel) 2022; 15:polym15010185. [PMID: 36616535 PMCID: PMC9823878 DOI: 10.3390/polym15010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Novel (Ca, Mg)CO3&SiO2 NPs-decorated multilayer graphene sheets could be successfully prepared from corn stalk pith using a simple alkaline hydrothermal treatment process followed by calcination in an inert atmosphere. The produced nanocomposite was characterized by SEM, EDX, TEM, FTIR, and XRD analytical techniques, which confirm the formation of multilayer graphene sheets decorated by inorganic nanoparticles. The nanocomposite shows efficient activity as a photocatalyst for water-splitting reactions under visible light. The influence of preparation parameter variations, including the alkaline solution concentration, hydrothermal temperature, reaction time, and calcination temperature, on the hydrogen evolution rate was investigated by preparing many samples at different conditions. The experimental work indicated that treatment of the corn stalk pith hydrothermally by 1.0 M KOH solution at 170 °C for 3 h and calcinating the obtained solid at 600 °C results in the maximum hydrogen production rate. A value of 43.35 mmol H2/gcat.min has been obtained associated with the energy-to-hydrogen conversion efficiency of 9%. Overall, this study opens a new avenue for extracting valuable nanocatalysts from biomass wastes to be exploited in hot applications such as hydrogen generation from water photo-splitting under visible light radiation.
Collapse
Affiliation(s)
- Nasser A. M. Barakat
- Chemical Engineering Department, Faculty of Engineering, Minia University, El-Minia 61519, Egypt
- Correspondence: (N.A.M.B.); (K.A.K.); Tel.: +20-862348005 (N.A.M.B.)
| | - Aya Gamil
- Chemical Engineering Department, Faculty of Engineering, Minia University, El-Minia 61519, Egypt
| | - Ibrahim Ashour
- Chemical Engineering Department, Faculty of Engineering, Minia University, El-Minia 61519, Egypt
| | - Khalil Abdelrazek Khalil
- Department of Mechanical & Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: (N.A.M.B.); (K.A.K.); Tel.: +20-862348005 (N.A.M.B.)
| |
Collapse
|
9
|
Chen Z, Liu Y, Kang Z. Diversity and Tailorability of Photoelectrochemical Properties of Carbon Dots. Acc Chem Res 2022; 55:3110-3124. [PMID: 36240013 DOI: 10.1021/acs.accounts.2c00570] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As a new kind of carbon based functional material, carbon dots (CDs) have sparked much interest in recent years. The tunable structure, composition, and morphology of CDs unlocks opportunities to enable diversity in their photoelectrochemical properties, and thus they show great potential in various applications such as biology, catalysis, sensors, and energy storage. Nevertheless, the related understanding of CDs is insufficient at present due to their inherent complexity of microstructure, which involves the intersection of high polymer, bulk carbon, and quantum dot (QD). A good understanding of the underlying mechanism behind the properties of CDs is still a formidable challenge, requiring the integration of robust knowledge from organic chemistry, materials science, and solid state physics. Within this context, discovering more appealing properties, elucidating fundamental factors that affect the properties and proposing effective engineering strategies that can realize specific functions for CDs are now highly pursued by researchers.At the beginning of this Account, the main features of CDs are introduced, where not only the basic structural, compositional and morphological characteristics but also the rich photoelectrochemical properties are elucidated, among which the band gap, chirality, photoinduced potential, and electron sink effect are particularly emphasized. Furthermore, new analysis techniques including transient photoinduced current (TPC), transient photoinduced voltage (TPV), and machine learning (ML) to reveal the unique properties of CDs are described. Then, several appealing strategies that aim to rationally tailor CDs for oriented applications are highlighted. These regulation strategies are morphology modulation (e.g., developing CDs with new geometrical configuration, controlling the particle size), phase engineering (e.g., altering the phase crystallinity, introducing the foreign atoms), surface functionalization (e.g., grafting various types of functional groups), and interfacial tuning (e.g., building CD-based nanohybrids with well-defined interfaces). Although the fundamental investigation of CDs is relatively undeveloped because of their complexity, this does not hinder their wide application. At the same time, exploring the extensive applications of CDs will promote their in-depth understanding. Finally, the chances for building a CD-centered blueprint for sustainable society are explored and challenges for future research in the field of CDs are proposed as follows: (i) the controllable synthesis of CDs with uniform size; (ii) search for novel CDs with unique structure, morphology, or composition; (iii) quantitative understanding of the property of CDs; (iv) performance enhancement by external forces such as magnetism or heat injection; (v) construction of the dual carbon concept; (vi) further research on different photocatalytic applications. On the whole, this Account may provide meaningful references for the understanding of the microstructure-property correlation as well as the regulation of CDs, thereby promoting their transition from fundamental research to practical application.
Collapse
Affiliation(s)
- Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.,Zhenhui Kang-Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078 Macao, China
| |
Collapse
|