1
|
Pandey P, Singha A, Bhowmick S, Qureshi M. Scalable, Flexible, Magnetic-Field-Guided rULGO Sponge-BN-Cobalt Oxide-Based Supercapacitors: Mechanistic Insights into Multiple Charge Transfer Pathways by the Distribution of Relaxation Times. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44665-44677. [PMID: 39149930 DOI: 10.1021/acsami.4c06561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Scalable and flexible supercapacitors are in high demand from an application point of view. Through our exploration, we have attained promising performance of electrochemical energy storage under the influence of an external magnetic field for future energy-based applications. In this work, a commercial sponge is used as a template for ultra-large graphene oxide (rULGO) functionalization, followed by the incorporation of Co3O4:BN without the inclusion of binders or conductive additives. The fabricated electrodes, namely, SPG-rULGO and SPG-rULGO-Co3O4:BN, demonstrate superior performance with a potential window of 2.2 V at a magnetic field strength of 13.5 and 28 mT, respectively. A specific capacitance of 218 ± 5% F·g-1 and 312 ± 5% F·g-1, respectively, with retention rates of 80 and 88% over 5000 charge-discharge cycles are achieved. In contrast to the conventional fabrication of the asymmetric device, both electrodes are made using flexible substrates with SPG-rULGO-Co3O4:BN as the positive electrode and SPG-rULGO as the negative electrode eliminating the need to use activated carbon. This configuration yields a specific capacitance of 153 ± 5% F·g-1 at 1 Ag-1, leading to a high energy density of 103 ± 5% W·h·kg-1 at a power density of 1.10 ± 5% kW kg-1 with an 85% retention rate. The charge-discharge mechanism of bare and modified electrodes is probed by the distribution of relaxation time analysis of the coupled electrochemical impedance spectra. The integration of magnetic field with advanced electrode materials opens up other possibilities for optimizing energy storage systems and advancing the field of flexible and mechanically robust supercapacitors.
Collapse
Affiliation(s)
- Peeyush Pandey
- Material Science Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anjana Singha
- Material Science Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sourav Bhowmick
- The Wolfson Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Mohammad Qureshi
- Material Science Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
2
|
Meng W, Pang R, Li M, Han L, Kong X, Zhang D, Zhang S, Zhang Y, Shang Y, Cao A. Integrated Catalyst-Substrate Electrodes for Electrochemical Water Splitting: A Review on Dimensional Engineering Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2310469. [PMID: 38282141 DOI: 10.1002/smll.202310469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/01/2024] [Indexed: 01/30/2024]
Abstract
Water splitting (or, water electrolysis) is considered as a promising approach to produce green hydrogen and relieve the ever-increasing energy consumption as well as the accompanied environmental impact. Development of high-efficiency, low-cost practical water-splitting systems demands elegant design and fabrication of catalyst-loaded electrodes with both high activity and long-life time. To this end, dimensional engineering strategies, which effectively tune the microstructure and activity of electrodes as well as the electrochemical kinetics, play an important role and have been extensively reported over the past years. Here, a type of most investigated electrode configurations is reviewed, combining particulate catalysts with 3D porous substrates (aerogels, metal foams, hydrogels, etc.), which offer special advantages in the field of water splitting. It is analyzed the design principles, structural and interfacial characteristics, and performance of particle-3D substrate electrode systems including overpotential, cycle life, and the underlying mechanism toward improved catalytic properties. In particular, it is also categorized the catalysts as different dimensional particles, and show the importance of building hybrid composite electrodes by dimensional control and engineering. Finally, present challenges and possible research directions toward low-cost high-efficiency water splitting and hydrogen production is discussed.
Collapse
Affiliation(s)
- Weixue Meng
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Rui Pang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Meng Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lei Han
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xiaobing Kong
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ding Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Shipeng Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yingjiu Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yuanyuan Shang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Anyuan Cao
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
3
|
Yadav I, Prakash V, Maurya MR, Sankar M. Oxido-Molybdenum(V) Corroles as Robust Catalysts for Oxidative Bromination and Selective Epoxidation Reactions in Aqueous Media under Mild Conditions. Inorg Chem 2023; 62:5292-5301. [PMID: 36958040 DOI: 10.1021/acs.inorgchem.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Two new meso-substituted oxido-molybdenum corroles were synthesized and characterized by various spectroscopic techniques. In the thermogram, MoO[TTC] (1) exhibited excellent thermal stability up to 491 °C while MoO[TNPC] (2) exhibited good stability up to 318 °C. The oxidation states of the molybdenum(V) were verified by electron paramagnetic resonance (EPR) spectroscopy and exhibited an axial compression with dxy1 configuration. Oxido-molybdenum(V) complexes were utilized for the selective epoxidation of various olefins with high TOF values (2066-3287 h-1) in good yields in a CH3CN/H2O (3:2, v/v) mixture in the presence of hydrogen peroxide as a green oxidant and NaHCO3 as a promoter. The oxidative bromination catalytic activity of oxido-molybdenum(V) complexes in an aqueous medium has been reported for the first time. Surprisingly, MoO[TNPC] (2) biomimics of the vanadium bromoperoxidase (VBPO) enzyme activity exhibited remarkably high TOF values (36 988-61 646 h-1) for the selective oxidative bromination of p-cresol and other phenol derivatives. Catalyst MoO[TNPC] (2) exhibited higher TOF values and better catalytic activity than catalyst MoO[TTC] (1) due to the presence of electron-withdrawing nitro groups evident from cyclic voltammetric studies.
Collapse
Affiliation(s)
- Inderpal Yadav
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ved Prakash
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
4
|
Liu Z, Guo F, Cheng L, Bo X, Liu T, Li M. Fabrication of manganese borate/iron carbide encapsulated in nitrogen and boron co-doped carbon nanowires as the accelerated alkaline full water splitting bi-functional electrocatalysts. J Colloid Interface Sci 2023; 629:179-192. [PMID: 36152575 DOI: 10.1016/j.jcis.2022.09.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
Abstract
With high prices of precious metals (such as platinum, iridium, and ruthenium) and transition metals (such as cobalt and nickel), the design of high-efficiency and low-cost non-precious-metal-based catalysts using iron (Fe) and manganese (Mn) metals for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are critical for commercial applications of water splitting devices. In the study, without using any template or surfactant, we successfully designed novel cross-linked manganese borate (Mn3(BO3)2) and iron carbide (Fe3C) embedded into boron (B) and nitrogen (N) co-doped three-dimensional (3D) hierarchically meso/macroporous carbon nanowires (denoted as FexMny@BN-PCFs). Electrochemical test results showed that the HER and OER catalytic activities of Fe1Mn1@BN-PCFs were close to those of 20 wt% Pt/C and RuO2. For full water splitting, (-) Fe1Mn1@BN-PCFs||Fe1Mn1@BN-PCF (+) cell achieved a current density of 10 mA cm-2 at a cell voltage of 1.622 V, which was 14.2 mV larger than that of (-) 20 wt% Pt/C||RuO2 (+) benchmark. The synergistic effect of 3D hierarchically meso/macroporous architectures, excellent charge transport capacity, and abundant active centers (cross-linked Mn3(BO3)2/Fe3C@BNC, BC3, pyridinic-N, MNC, and graphitic-N) enhanced the water splitting catalytic activity of Fe1Mn1@BN-PCFs. The (-) Fe1Mn1@BN-PCFs||Fe1Mn1@BN-PCF (+) cell exhibited excellent stability owing to the superior structural and chemical stabilities of 3D hierarchically porous Fe1Mn1@BN-PCFs.
Collapse
Affiliation(s)
- Zhuo Liu
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Fei Guo
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Lei Cheng
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China; Zhejiang Power New Energy Co. Ltd., Shaoxing 312000, PR China.
| | - Xiangjie Bo
- Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, PR China.
| | - Tingting Liu
- School of Materials and Energy, Yunnan Key Laboratory for Micro/Nano Materials and Technology, Yunnan University, No. 2, Green Lake North Road, Kunming 650091, PR China.
| | - Mian Li
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China.
| |
Collapse
|