1
|
Hu R, Chen W, Lai J, Li F, Qiao H, Liu Y, Huang Z, Qi X. Heterogeneous Interface Engineering of 2D Black Phosphorus-Based Materials for Enhanced Photocatalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409735. [PMID: 39723695 DOI: 10.1002/smll.202409735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Photocatalysis has garnered significant attention as a sustainable approach for energy conversion and environmental management. 2D black phosphorus (BP) has emerged as a highly promising semiconductor photocatalyst owing to its distinctive properties. However, inherent issues such as rapid recombination of photogenerated electrons and holes severely impede the photocatalytic efficacy of single BP. The construction/stacking mode of BP with other nanomaterials decreases the recombination rate of carriers and extend its functionalities. Herein, from the perspective of atomic interface and electronic interface, the enhancement mechanism of photocatalytic performance by heterogeneous interface engineering is discussed. Based on the intrinsic properties of BP and corresponding photocatalytic principles, the effects of diverse interface characteristics (point, linear, and planar interface) and charge transfer mechanisms (type I, type II, Z-scheme, and S-scheme heterojunctions) on photocatalysis are summarized systematically. The modulation of heterogeneous interfaces and rational regulation of charge transfer mechanisms can enhance charge migration between interfaces and even maximize redox capability. Furthermore, research progress of heterogeneous interface engineering based on BP is summarized and their prospects are looked ahead. It is anticipated that a novel concept would be presented for constructing superior BP-based photocatalysts and designing other 2D photocatalytic materials.
Collapse
Affiliation(s)
- Rong Hu
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105, P. R. China
| | - Wei Chen
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105, P. R. China
| | - Jingxia Lai
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105, P. R. China
| | - Fan Li
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105, P. R. China
| | - Hui Qiao
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105, P. R. China
| | - Yundan Liu
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105, P. R. China
| | - Zongyu Huang
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105, P. R. China
| | - Xiang Qi
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105, P. R. China
| |
Collapse
|
2
|
Zhang B, Chen J, Li Y, Zhu Y, Li S, Zhu F, Gao X, Liao S, Wang S, Xiao W, Shi S, Chen C. Engineering of Pore Design and Oxygen Vacancy on High-Entropy Oxides by a Microenvironment Tailoring Strategy. Inorg Chem 2024; 63:5689-5700. [PMID: 38485494 DOI: 10.1021/acs.inorgchem.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
High-entropy oxides (HEOs) exhibit abundant structural diversity due to cationic and anionic sublattices with independence, rendering them superior in catalytic applications compared to monometallic oxides. Nevertheless, the conventional high-temperature calcination approach undermines the porosity and reduces the exposure of active sites (such as oxygen vacancies, OVs) in HEOs, leading to diminished catalytic efficiency. Herein, we fabricate a series of HEOs with a large surface area utilizing a microenvironment modulation strategy (m-NiMgCuZnCo: 86 m2/g, m-MnCuCoNiFe: 67 m2/g, and m-FeCrCoNiMn: 54 m2/g). The enhanced porosity in m-NiMgCuZnCo facilitates the presentation of numerous OVs, exhibiting an exceptional catalytic performance. This tactic creates inspiration for designing HEOs with rich porosity and active species with vast potential applications.
Collapse
Affiliation(s)
- Bingzhen Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
- School of Power and Mechanical Engineering, The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Jian Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Ying Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Yahui Zhu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shengchen Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Fangyu Zhu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Xiahong Gao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Sheng Liao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shuhua Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Weiming Xiao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shunli Shi
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
3
|
Yang Z, Wang L, Fang M, Xia X, Liu Y. Efficient spatial separation of charge carriers over CoS1+x cocatalyst modified MIL-88B (Fe)/ZnIn2S4 S-scheme heterojunctions for photoredox dual reaction and insight into the charge-transfer mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|