1
|
Zhou K, Sun R, Wojciechowski JP, Wang R, Yeow J, Zuo Y, Song X, Wang C, Shao Y, Stevens MM. 4D Multimaterial Printing of Soft Actuators with Spatial and Temporal Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312135. [PMID: 38290081 DOI: 10.1002/adma.202312135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Soft actuators (SAs) are devices which can interact with delicate objects in a manner not achievable with traditional robotics. While it is possible to design a SA whose actuation is triggered via an external stimulus, the use of a single stimulus creates challenges in the spatial and temporal control of the actuation. Herein, a 4D printed multimaterial soft actuator design (MMSA) whose actuation is only initiated by a combination of triggers (i.e., pH and temperature) is presented. Using 3D printing, a multilayered soft actuator with a hydrophilic pH-sensitive layer, and a hydrophobic magnetic and temperature-responsive shape-memory polymer layer, is designed. The hydrogel responds to environmental pH conditions by swelling or shrinking, while the shape-memory polymer can resist the shape deformation of the hydrogel until triggered by temperature or light. The combination of these stimuli-responsive layers allows for a high level of spatiotemporal control of the actuation. The utility of the 4D MMSA is demonstrated via a series of cargo capture and release experiments, validating its ability to demonstrate active spatiotemporal control. The MMSA concept provides a promising research direction to develop multifunctional soft devices with potential applications in biomedical engineering and environmental engineering.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Rujie Sun
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jonathan P Wojciechowski
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Richard Wang
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jonathan Yeow
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yuyang Zuo
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Xin Song
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Chunliang Wang
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yue Shao
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
2
|
Wang Z, Chen Y, Ma Y, Wang J. Bioinspired Stimuli-Responsive Materials for Soft Actuators. Biomimetics (Basel) 2024; 9:128. [PMID: 38534813 DOI: 10.3390/biomimetics9030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Biological species can walk, swim, fly, jump, and climb with fast response speeds and motion complexity. These remarkable functions are accomplished by means of soft actuation organisms, which are commonly composed of muscle tissue systems. To achieve the creation of their biomimetic artificial counterparts, various biomimetic stimuli-responsive materials have been synthesized and developed in recent decades. They can respond to various external stimuli in the form of structural or morphological transformations by actively or passively converting input energy into mechanical energy. They are the core element of soft actuators for typical smart devices like soft robots, artificial muscles, intelligent sensors and nanogenerators. Significant progress has been made in the development of bioinspired stimuli-responsive materials. However, these materials have not been comprehensively summarized with specific actuation mechanisms in the literature. In this review, we will discuss recent advances in biomimetic stimuli-responsive materials that are instrumental for soft actuators. Firstly, different stimuli-responsive principles for soft actuators are discussed, including fluidic, electrical, thermal, magnetic, light, and chemical stimuli. We further summarize the state-of-the-art stimuli-responsive materials for soft actuators and explore the advantages and disadvantages of using electroactive polymers, magnetic soft composites, photo-thermal responsive polymers, shape memory alloys and other responsive soft materials. Finally, we provide a critical outlook on the field of stimuli-responsive soft actuators and emphasize the challenges in the process of their implementation to various industries.
Collapse
Affiliation(s)
- Zhongbao Wang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yixin Chen
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Ma
- Department of Mechanical Engineering, Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jing Wang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|