1
|
Klopfenstein M, Emry L, Jain P, Alaei A, Schmelmer B, Chou A, Mandal T, Kim MW, Aydil ES, Chou T, Lee SS. Nanoconfined Metal Halide Perovskite Crystallization within Removable Polymer Scaffolds. CRYSTAL GROWTH & DESIGN 2025; 25:3003-3012. [PMID: 40352752 PMCID: PMC12063054 DOI: 10.1021/acs.cgd.5c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025]
Abstract
Nanoconfining crystallization to access metastable polymorphs and prescribe crystal orientations typically involves filling inert nanoporous scaffolds with target compounds, resulting in isolated nanocrystals. Such crystal-scaffold composites are unsuitable for optoelectronic devices that require interconnected crystalline pathways for charge transport. Here, we reverse the order of fabricating crystal-scaffold composites by first electrospinning interconnected networks of amorphous methylammonium lead iodide (MAPbI3) precursor nanofibers, then introducing a poly(methyl methacrylate) (PMMA) scaffold by spin coating from an antisolvent for MAPbI3. PMMA suppresses MAPbI3 crystal blooming from the fiber surface during thermal annealing, instead promoting the formation of densely packed polycrystalline networks of MAPbI3 crystals at the fiber/PMMA interface. Near-IR photodetectors comprising densely packed MAPbI3 nanocrystals grown within a PMMA scaffold in a coplanar electrode geometry exhibit photocurrents up to 60 times larger than those comprising fibers annealed without PMMA. These results indicate that MAPbI3 crystals form a percolated network for charge carriers to flow through PMMA-confined fibers, resulting in significantly improved photodetector performance.
Collapse
Affiliation(s)
- Mia Klopfenstein
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Lance Emry
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Pulkita Jain
- Department
of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Aida Alaei
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Ben Schmelmer
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Andrew Chou
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Trinanjana Mandal
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Min-Woo Kim
- Department
of Semiconductor Engineering, Myongji University, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Korea
| | - Eray S. Aydil
- Department
of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Tsengming Chou
- Department
of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Stephanie S. Lee
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
2
|
Huangfu X, Chen J, Ge G, Li J, Zhang J, Lin Q, Xu H, Wang SM. 2D/3D Perovskite Surface Passivation-Enabled High-Detectivity Near-Infrared Photodiodes. SENSORS (BASEL, SWITZERLAND) 2025; 25:2740. [PMID: 40363179 PMCID: PMC12074136 DOI: 10.3390/s25092740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Due to high responsivity and wide spectral sensitivity, metal halide perovskite photodiodes have a wide range of applications in the fields of visible light and near-infrared photodetection. Specific detectivity is an important quality factor for high-performance perovskite-based photodiodes, while one of the keys to achieving high detectivity is to reduce dark current. Here, 3-fluoro phenethylammonium iodide (3F-PEAI) was used to passivate the perovskite surface and form the two-dimensional (2D) perovskite on the three-dimensional (3D) perovskite surface. The as-fabricated passivated perovskite photodiodes with 2D/3D hybrid-dimensional perovskite heterojunctions showed two orders of magnitude smaller dark current, larger open circuit voltage and faster photoresponse, when compared to the control perovskite photodiodes. Meanwhile, it maintained almost identical photocurrent, achieving a high specific detectivity up to 2.4 × 1012 Jones and over the visible-near-infrared broadband photodetection. Notably, the champion photoresponsivity value of 0.45 A W-1 was achieved at 760 nm. It was verified that the 2D capping layers were able to suppress trap states and accelerate photocarrier collection. This work demonstrates strategic passivation of surface iodine vacancies, offering a promising pathway for developing ultrasensitive and low-power consumption photodetectors based on metal halide perovskites.
Collapse
Affiliation(s)
- Xuefeng Huangfu
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Junyu Chen
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Gaohui Ge
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jianyu Li
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiazhen Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Qinhao Lin
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Hao Xu
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Shu Min Wang
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Goteborg, Sweden
| |
Collapse
|
3
|
Shen L, Wu H, Cao Z, Zhang X, Liu L, Sawwan H, Zhu T, Zheng J, Wang H, Gong X. Two-Dimensional Metal Halide Perovskites Created by Binary Conjugated Organic Cations for High-Performance Perovskite Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19318-19329. [PMID: 38577894 DOI: 10.1021/acsami.4c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Studies indicated that two-dimensional (2D) metal halide perovskites (MHPs) embodied with three-dimensional (3D) MHPs were a facile way to realize efficient and stable perovskite solar cells (PSCs) and perovskite photodetectors (PPDs). Here, high-performance PSCs and PPDs, which are based on 2D/3D MHPs bilayer thin films, where the 2D MHPs are created by binary conjugated organic cations, are reported. Systemically studies reveal that the above novel 2D/3D MHPs bilayer thin films possess an enlarged crystal size, balanced charge transport, reduced charge carrier recombination, smaller charge-transfer resistance, and accelerated charge-extraction process compared to the 2D/3D MHPs bilayer thin films, where the 2D MHPs are created by a single conjugated organic cation. As a result, the PSCs based on the above novel 2D/3D MHPs bilayer thin film exhibit a power conversion efficiency of 22.76%. Moreover, unencapsulated PSCs possess dramatically enhanced stability compared with those based on the 2D/3D MHPs bilayer thin films, where the 2D MHPs are created by a single conjugated organic cation. In addition, the PPDs based on the above novel 2D/3D MHPs bilayer thin film exhibit a projected detectivity of 1016 cm Hz1/2/W and a linear dynamic range of 108 dB at room temperature. Our studies indicate that the development of binary conjugated organic cation-based 2D MHPs incorporated with 3D MHPs is a simple method to realize high-performance PSCs and PPDs.
Collapse
Affiliation(s)
- Lening Shen
- School of Polymer Science and Polymer Engineering, College of Engineering and Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Haodong Wu
- School of Polymer Science and Polymer Engineering, College of Engineering and Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Zikun Cao
- Department of Physics, University of Miami, Coral Gables ,Florida33146, United States
| | - Xiyao Zhang
- School of Polymer Science and Polymer Engineering, College of Engineering and Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Lei Liu
- School of Polymer Science and Polymer Engineering, College of Engineering and Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Hussain Sawwan
- School of Polymer Science and Polymer Engineering, College of Engineering and Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Tao Zhu
- School of Polymer Science and Polymer Engineering, College of Engineering and Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Jie Zheng
- Department of Chemical, Biomolecular and Corrosion Engineering, College of Engineering and Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - He Wang
- Department of Physics, University of Miami, Coral Gables ,Florida33146, United States
| | - Xiong Gong
- School of Polymer Science and Polymer Engineering, College of Engineering and Polymer Science, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemical, Biomolecular and Corrosion Engineering, College of Engineering and Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
4
|
Lai L, Liu G, Zhou Y, He X, Ma Y. Modulating Dimensionality of 2D Perovskite Layers for Efficient and Stable 2D/3D Perovskite Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19849-19857. [PMID: 38572837 DOI: 10.1021/acsami.4c02220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Two-dimensional (2D) perovskites have been widely adopted for improving the performance and stability of three-dimensional (3D) metal halide perovskite devices. However, rational manipulation of the phase composition of 2D perovskites for suitable energy level alignment in 2D/3D perovskite photodetectors (PDs) has been rarely explored. Herein, we precisely controlled the dimensionality of the 2D perovskite on CsPbI2Br films by tuning the polarity of the n-butylammonium iodide (BAI)-based solvents. In comparison to the pure n = 1 2D perovskite (ACN-BAI) formed by acetonitrile treatment, a mixture of n = 1 and n = 2 phases (IPA-BAI) generated by isopropanol (IPA) treatment guaranteed more robust defect passivation and favorable energy level alignment at the perovskite/hole transport layer interface. Consequently, the IPA-BAI PD exhibited a responsivity of 0.41 A W-1, a detectivity of 1.01 × 1013 Jones, and a linear dynamic range of 120 dB. Furthermore, the mixed-phase 2D layer effectively shielded the 3D perovskite from moisture. The IPA-BAI device retained 76% of its initial responsivity after 500 h of nonencapsulated storage at 10% relative humidity. This research provides valuable insights into the dimensional modulation of 2D perovskites for further enhancing the performance of 2D/3D perovskite PDs.
Collapse
Affiliation(s)
- Limin Lai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Guiyuan Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yibo Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xiaoyu He
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ying Ma
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|