1
|
Jaerger S, Appelt P, da Cunha MAA, Ayma FC, Schneider R, Bittencourt C, Anaissi FJ. Clays enhanced with niobium: potential in wastewater treatment and reuse as pigment with antibacterial activity. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:141-154. [PMID: 39968170 PMCID: PMC11833176 DOI: 10.3762/bjnano.16.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
Bentonite clay sourced from the Guarapuava region, Brazil, was modified with niobium oxide (BEOx) and niobium phosphate (BEPh) to act as an adsorbent and photocatalyst in the remediation of wastewater containing methylene blue (MB) dye. Additionally, colored materials were evaluated for their potential as antibacterial hybrid pigments. The bentonite clay modified with niobium was prepared by a solution containing swelling clay mixed with niobium oxide (NbOx) and niobium phosphate (NbPh) in a water solution; after that, the suspension was calcinated. X-ray diffractometry, X-ray photoelectron spectroscopy, and laser-induced breakdown spectroscopy assessed the modifications induced by the incorporation of niobium compounds into the clay, confirming the presence of niobium in the bentonite clay. Following characterization, the BEOx and BEPh samples were used as adsorbents or photocatalysts for treating solutions containing the MB dye (400 mg·L-1) at 25 °C. The results showed adsorption and photocatalysis efficiency above 94% for both samples. The blue-colored BEOx and BEPh samples were then applied as a hybrid pigment. The power pigment and its dispersion in colorless paint were evaluated by the CIEL*a*b* color space, and the ΔE parameters show values above 12, indicating a very strong color parameter difference. Subsequently, the efficacy of BEOx and BEPh as a hybrid pigment was assessed using the minimum inhibitory concentration (MIC) assay against two bacteria strains: Bacillus cereus (ATCC 10876) and Proteus mirabilis (ATCC 35649). The analysis revealed remarkable antibacterial activity against Proteus mirabilis, suggesting a preferential selectivity for Gram-negative bacteria.
Collapse
Affiliation(s)
- Silvia Jaerger
- Federal University of Technology - Paraná - UTFPR, Campus Toledo, Rua Cristo Rei, 19. 85902-490, Toledo, Brazil
- Chemistry Department, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, PR, Brazil
| | - Patricia Appelt
- Chemistry Department, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, PR, Brazil
| | | | - Fabián Ccahuana Ayma
- Chemistry Department, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, PR, Brazil
| | - Ricardo Schneider
- Federal University of Technology - Paraná - UTFPR, Campus Toledo, Rua Cristo Rei, 19. 85902-490, Toledo, Brazil
| | - Carla Bittencourt
- Chimie des Interactions PlaBEa-Surface (ChIPS), Research Institute for Materials Science and Engineering, University of Mons, 7000 Mons, Belgium
| | - Fauze Jacó Anaissi
- Chemistry Department, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, PR, Brazil
| |
Collapse
|
2
|
Wang Y, Li Y, Chai J, Rui Y, Jiang L, Tang B. Constructing novel hydrated metal molten salt with high self-healing as the anode material for lithium-ion batteries. Dalton Trans 2024; 53:9081-9091. [PMID: 38738658 DOI: 10.1039/d4dt00696h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Lithium-ion batteries (LIBs) are greatly limited in their practical application because of their poor cycle performance, low conductivity and volume expansion. Herein, molten salts (MSs) FeCl3·6H2O-NMP with low temperature via simple preparation are used as the anode material of LIBs for the first time to break through the bottleneck of LIBs. The good fluidity and high self-healing of FeCl3·6H2O-NMP effectively avoid the collapse and breakage of the structure. Based on this feature, the initial discharge specific capacity reached 770.28 mA h g-1, which was more than twice that of the commercial graphite anode. After 200 cycles at a current density of 100 mA g-1, the specific capacity did not decrease rather it was found to be higher than the initial discharge specific capacity, reaching 867.24 mA h g-1. Besides, the good conductivity of MSs provides convenience for the removal and intercalation of Li+. The active H sites that can combine with lithium ions form LiH and provide capacity for LIBs. Density functional theory (DFT) calculation also provided theoretical proof for the mechanism of LIBs.
Collapse
Affiliation(s)
- Yiting Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Yifei Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Jiali Chai
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Yichuan Rui
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Lei Jiang
- Department of Chemical Engineering, KU Leuven, Leuven 3001, Belgium.
| | - Bohejin Tang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| |
Collapse
|
3
|
Shirazi Amin A, Zhao W, Toloueinia P, Perera IP, Fee J, Su Y, Posada LF, Suib SL. Cycling-Induced Capacity Increase of Bulk and Artificially Layered LiTaO 3 Anodes in Lithium-Ion Batteries. ACS NANO 2023; 17:20203-20217. [PMID: 37797304 DOI: 10.1021/acsnano.3c05990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Tantalum-based oxide electrodes have recently drawn much attention as promising anode materials owing to their hybrid Li+ storage mechanism. However, the utilization of LiTaO3 electrode materials that can deliver a high theoretical capacity of 568 mAh g-1 has been neglected. Herein, we prepare a layered LiTaO3 electrode formed artificially by restacking LiTaO3 nanosheets using a facile synthesis method and investigate the Li+ storage performance of this electrode compared with its bulk counterpart. The designed artificially layered anode reaches specific capacities of 474, 290, and 201 mAh g-1, respectively, at 56 (>500 cycles), 280 (>1000 cycles), and 1120 mAg-1 (>2000 cycles) current densities. We also determine that the Li+ storage capacity of the layered LiTaO3 demonstrates a cycling-induced capacity increase after a certain number of cycles. Adopting various characterization techniques on LiTaO3 electrodes before and after electrochemical cycling, we attribute the origin of the cycling-induced improvement of the Li+ storage capacity in these electrodes to the amorphization of the electrode after cycling, formation of metallic tantalum during the partially irreversible conversion mechanism, lower activation overpotential of electrodes due to the formation of Li-rich species by the lithium insertion mechanism, and finally the intrinsic piezoelectric behavior of LiTaO3 that can regulate Li+ diffusion kinetics.
Collapse
Affiliation(s)
- Alireza Shirazi Amin
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Wen Zhao
- Department of Materials Science & Engineering, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Panteha Toloueinia
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Inosh Prabasha Perera
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Jared Fee
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Yue Su
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Luisa F Posada
- Department of Materials Science & Engineering, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Steven L Suib
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
4
|
Zhang H, Wang Y, Zhao R, Kou M, Guo M, Xu K, Tian G, Wei X, Jiang S, Yuan Q, Zhao J. Fe III Chelated with Humic Acid with Easy Synthesis Conditions and Good Performance as Anode Materials for Lithium-Ion Batteries. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6477. [PMID: 37834613 PMCID: PMC10573477 DOI: 10.3390/ma16196477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
In this work, we prepared a green, cheap material by chelating humic acid with ferric ions (HA-Fe) and used it as an anode material in LIBs for the first time. From the SEM, TEM, XPS, XRD, and nitrogen adsorption-desorption experimental results, it was found that the ferric ion can chelate with humic acid successfully under mild conditions and can increase the surface area of materials. Taking advantage of the chelation between the ferric ions and HA, the capacity of HA-Fe is 586 mAh·g-1 at 0.1 A·g-1 after 1000 cycles. Moreover, benefitting from the chelation effect, the activation degree of HA-Fe (about 8 times) is seriously improved compared with pure HA material (about 2 times) during the change-discharge process. The capacity retention ratio of HA-Fe is 55.63% when the current density increased from 0.05 A·g-1 to 1 A·g-1, which is higher than that of HA (32.55%) and Fe (24.85%). In the end, the storage mechanism of HA-Fe was investigated with ex-situ XPS measurements, and it was found that the C=O and C=C bonds are the activation sites for storage Li ions but have different redox voltages.
Collapse
Affiliation(s)
- Hao Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (H.Z.); (Y.W.); (R.Z.); (M.K.); (M.G.); (K.X.); (S.J.)
| | - Youkui Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (H.Z.); (Y.W.); (R.Z.); (M.K.); (M.G.); (K.X.); (S.J.)
| | - Ruili Zhao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (H.Z.); (Y.W.); (R.Z.); (M.K.); (M.G.); (K.X.); (S.J.)
| | - Meimei Kou
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (H.Z.); (Y.W.); (R.Z.); (M.K.); (M.G.); (K.X.); (S.J.)
| | - Mengyao Guo
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (H.Z.); (Y.W.); (R.Z.); (M.K.); (M.G.); (K.X.); (S.J.)
| | - Ke Xu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (H.Z.); (Y.W.); (R.Z.); (M.K.); (M.G.); (K.X.); (S.J.)
| | - Gang Tian
- Shandong Tianyi New Energy Co., Ltd., Liaocheng 252059, China; (G.T.); (X.W.)
| | - Xinting Wei
- Shandong Tianyi New Energy Co., Ltd., Liaocheng 252059, China; (G.T.); (X.W.)
| | - Song Jiang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (H.Z.); (Y.W.); (R.Z.); (M.K.); (M.G.); (K.X.); (S.J.)
| | - Qing Yuan
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (H.Z.); (Y.W.); (R.Z.); (M.K.); (M.G.); (K.X.); (S.J.)
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Jinsheng Zhao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (H.Z.); (Y.W.); (R.Z.); (M.K.); (M.G.); (K.X.); (S.J.)
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
5
|
Zeng S, Xu Q, Jin H, Zeng L, Wang Y, Lai W, Yao Q, Zhang J, Chen Q, Qian Q. A green strategy towards fabricating FePO4-graphene oxide for high-performance cathode of lithium/sodium-ion batteries recovered from spent batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|