1
|
Zhang P, Yang S, Xie H, Li Y, Wang F, Gao M, Guo K, Wang R, Lu X. Advanced Three-Dimensional Microelectrode Architecture Design for High-Performance On-Chip Micro-Supercapacitors. ACS NANO 2022; 16:17593-17612. [PMID: 36367555 DOI: 10.1021/acsnano.2c07609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rapid development of miniaturized electronic devices has greatly stimulated the endless pursuit of high-performance on-chip micro-supercapacitors (MSCs) delivering both high energy and power densities. To this end, an advanced three-dimensional (3D) microelectrode architecture design offers enormous opportunities due to high mass loading of active materials, large specific surface areas, fast ion diffusion kinetics, and short electron transport pathways. In this review, we summarize the recent advances in the rational design of 3D architectured microelectrodes including 3D dense microelectrodes, 3D nanoporous microelectrodes, and 3D macroporous microelectrodes. Furthermore, the emergent microfabrication strategies are discussed in detail in terms of charge storage mechanisms and structure-performance correlation for on-chip MSCs. Finally, we conclude with a perspective on future opportunities and challenges in this thriving field.
Collapse
Affiliation(s)
- Panpan Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Sheng Yang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Honggui Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Yang Li
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Faxing Wang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01069 Dresden, Germany
| | - Mingming Gao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Renheng Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| |
Collapse
|
2
|
Yang W, Hu Z, Zhang C, Guo Y, Zhao J. Screen printing preparation of high-performance flexible planar micro-supercapacitors based on MoS2 nanoparticles decorated electrochemically exfoliated graphene. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|