1
|
Huang H, Yang Q, Yao K, Geng W, Jing X. Visible-light harvesting 2D copper-cluster-based MOFs as efficient ROS generators for selective oxidation of amines. Dalton Trans 2025; 54:6015-6019. [PMID: 40126519 DOI: 10.1039/d5dt00120j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
We have designed and synthesized an aesthetically appealing two-dimensional copper-cluster-based organic framework material named Cu-BPYC. This material exhibits superior charge separation and transfer efficiency, as well as reactive oxygen species (ROS) generation capability under visible-light irradiation. Through the synergistic mechanisms of photo-induced energy and charge transfer, it effectively promotes the oxidation of amines to imines. Additionally, Cu-BPYC demonstrates excellent structural stability and reusability in heterogeneous catalytic systems.
Collapse
Affiliation(s)
- Huilin Huang
- School of Chemical and Printing Dyeing Engineering, Henan University of Engineering, Zhengzhou, 451191, P. R. China.
| | - Qiong Yang
- School of Chemical and Printing Dyeing Engineering, Henan University of Engineering, Zhengzhou, 451191, P. R. China.
| | - Kun Yao
- School of Chemical and Printing Dyeing Engineering, Henan University of Engineering, Zhengzhou, 451191, P. R. China.
| | - Wenchao Geng
- School of Chemical and Printing Dyeing Engineering, Henan University of Engineering, Zhengzhou, 451191, P. R. China.
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
2
|
Shen Q, Chen J, Jing X, Duan C. Modifying Parallel Excitations into One Framework for C(sp 3)─H Bond Activation with Energy Combined More Than Two Photons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404293. [PMID: 39052896 PMCID: PMC11423249 DOI: 10.1002/advs.202404293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/09/2024] [Indexed: 07/27/2024]
Abstract
Natural photosynthesis enzymes utilize energies of several photons for challenging oxidation of water, whereas artificial photo-catalysis typically involves only single-photon excitation. Herein, a multiphoton excitation strategy is reported that combines parallel photo-excitations with a photoinduced electron transfer process for the activation of C(sp3)─H bonds, including methane. The metal-organic framework Fe3-MOF is designed to consolidate 4,4',4″-nitrilotrisbenzoic units for the photoactivation of dioxygen and trinuclear iron clusters as the HAT precursor for photoactivating alkanes. Under visible light irradiation, the dyes and iron clusters absorbed parallel photons simultaneously to reach their excited states, respectively, generating 1O2 via energy transfer and chlorine radical via ligand-to-metal charge transfer. The further excitation of organic dyes leads to the reduction of 1O2 into O2 •- through a photoinduced electron transfer, guaranteeing an extra multiphoton oxygen activation manner. The chlorine radical abstracts a hydrogen atom from alkanes, generating the carbon radical for further oxidation transformation. Accordingly, the total oxidation conversion of alkane utilizing three photoexcitation processes combines the energies of more than two photons. This new platform synergistically combines a consecutive excited photoredox organic dye and a HAT catalyst to combine the energies of more than two photons, providing a promising multiphoton catalysis strategy under energy saving, and high efficiency.
Collapse
Affiliation(s)
- Qingbo Shen
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jiali Chen
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xu Jing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
3
|
Gao H, Tang Y, Liu S, He C, Li H, Zhao L, Duan C. Eosin Y Post-Decorated Metal-Organic Framework as a Selectivity Regulator for the Alcohols Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37896-37905. [PMID: 39010647 DOI: 10.1021/acsami.4c05017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The selective oxidation of alcohols into aldehydes is a basic and significant procedure, with great potential for scientific research and industrial applications. However, as an important factor in the C(sp3)-H activation process, high selectivity is generally difficult to achieve due to the fact that the more easily activated properties of aldehydes are compared to alcohols. Herein, by the ingenious decoration of eosin Y into a Zr-based metal-organic framework (MOF-808), EY@MOF-808 was prepared as a selectivity regulator for the aerobic oxidation of the benzyl alcohols into corresponding aldehydes, possessing applicability for the benzylic alcohols with various substituents. By anchoring eosin Y on Zr6O4(OH)4 clusters of MOF-808 and maintaining open metal nodes with selective binding effects, the benzyl alcohol substrates were selectively coordinated to the unsaturated metal clusters adjacent to eosin Y, which ensured that the excited eosin Y rapidly activated substrates to generate carbon radicals by the hydrogen atom transfer (HAT) process. The rapid electron transfer (ET) simultaneously produced reactive oxygen species (O2•-) and then a combination of both to further promote the generation of benzaldehydes. The weak interaction of benzaldehydes with the skeleton allowed it to dissociate rapidly, thus preventing overoxidation. Under the catalysis of EY@MOF-808, the selectivity of various benzaldehydes was more than 99%. In contrast, eosin Y gave only benzoic acid products under the same conditions, which demonstrated the superiority of regulatory selectivity of EY@MOF-808. Taking advantage of the heterogeneity of the MOF, EY@MOF-808 was recycled four times without a decrease in its selectivity and avoided the quenching effect of eosin Y. The organic functional units postdecorated MOF-based photocatalyst strategy exhibits a promising new perspective approach to sustainably regulating the selectivity of inert oxidation.
Collapse
Affiliation(s)
- Hui Gao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yang Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Songtao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Huaqing Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
4
|
Zhang Z, Shen K, Zhang Q, Duan C, Jing X. A novel porphyrin MOF catalyst for efficient conversion of CO 2 with propargyl amines. Dalton Trans 2024; 53:10060-10064. [PMID: 38832725 DOI: 10.1039/d4dt01063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The capture and conversion of carbon dioxide (CO2) into valuable chemical products under mild conditions is an important and challenging approach for contemporary industry. Carboxylic acid ligands are widely used in the development of functionalized metal organic framework materials due to their excellent stability. Herein, a novel mixed-metal organic framework Cu-TCPP(Fe) was assembled from iron-(Fe)-porphyrin ligands, which can efficiently catalyze the reaction of propargylic amines and CO2 to synthesize 2-oxazolidinones.
Collapse
Affiliation(s)
- Zhitao Zhang
- Add State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Kesheng Shen
- Add State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Qian Zhang
- Add State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Chunying Duan
- Add State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Xu Jing
- Add State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| |
Collapse
|
5
|
Ding B, Cai J, Guo Q, Huang L, Duan C. Bioinspired Photoactive Cu-Halide Coordination Polymers for Reduction Activation and Oxygen Conversion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13938-13947. [PMID: 38451748 DOI: 10.1021/acsami.3c17175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Natural copper oxygenases provide fundamental principles for catalytic oxidation with kinetically inert molecular oxygen, but it remains a marked challenge to mimic both their structure and function in an entity. Inspired by the CuA enzymatic sites, herein we report two new photoactive binuclear copper-iodine- and bisbenzimidazole-comodified coordination polymers to reproduce the natural oxo-functionalization repertoire in a unique photocatalytic pathway. Under light irradiation, the Cu-halide coordination polymers effectively reduce NHP esters and complete oxygen reduction activation via photoinduced electron transfer for the aerobic oxidative coupling of hydroquinone with terminal alkynes, affording hydroxyl-functionalized ketones with high efficiency and selectivity. This supramolecular approach to developing bioinspired artificial oxygenases that merge transition metal- and photocatalysis supplies a new way to fabricate distinctive photocatalysts with desirable catalytic performances and controllable precise active sites.
Collapse
Affiliation(s)
- Baotong Ding
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Junkai Cai
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Qiaojia Guo
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lei Huang
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
6
|
Li M, Liu X, Che Y, Xing H, Sun F, Zhou W, Zhu G. Controlled Partial Linker Thermolysis in Metal-Organic Framework UiO-66-NH 2 to Give a Single-Site Copper Photocatalyst for the Functionalization of Terminal Alkynes. Angew Chem Int Ed Engl 2023; 62:e202308651. [PMID: 37466011 DOI: 10.1002/anie.202308651] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
Metal-organic frameworks (MOFs) with expanding porosity and tailored pore environments are intriguing for catalytic applications. We report herein a straightforward method of controlled partial linker thermolysis to introduce desirable mesopores into mono-ligand MOFs, which is different from the classical thermolyzing method that starts from mixed-linker MOFs. UiO-66-NH2 , after partial ligand thermolysis, exhibits significant mesoporosity, retained crystal structure, improved charge photogeneration and abundant anchoring sites, which is ideal to explore single-site photocatalysis. Atomically dispersed Cu is then accommodated in the tailored pore. The resulting single-site Cu catalyst exhibits excellent performance for photocatalytic alkylation and oxidation coupling for the functionalization of terminal alkynes. The study highlights the advantage of controlled partial linker thermolysis to synthesize hierarchical MOFs to achieve the advanced single-site photocatalysis.
Collapse
Affiliation(s)
- Mengying Li
- College of Chemistry, Northeast Normal University, Changchun, 130021, China
| | - Xin Liu
- College of Chemistry, Northeast Normal University, Changchun, 130021, China
| | - Yan Che
- College of Chemistry, Northeast Normal University, Changchun, 130021, China
| | - Hongzhu Xing
- College of Chemistry, Northeast Normal University, Changchun, 130021, China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Wei Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Guangshan Zhu
- College of Chemistry, Northeast Normal University, Changchun, 130021, China
| |
Collapse
|
7
|
Zhao L, Cai W, Ji G, Wei J, Du Z, He C, Duan C. Anthraquinone-Based Metal-Organic Frameworks as a Bifunctional Photocatalyst for C-H Activation. Inorg Chem 2022; 61:9493-9503. [PMID: 35696346 DOI: 10.1021/acs.inorgchem.2c00441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal-organic frameworks (MOFs) have gained attention as multifunctional catalytic platforms, allowing us to gain important insights into synergistically activating both C-H bonds and oxygen for improving oxidation. Herein, by ingenious incorporation of anthraquinone, we report an anthraquinone-based MOF as a bifunctional heterogeneous photocatalytic platform to simultaneously activate inert C(sp3)-H bonds and oxygen for C-H bond oxidation. Making use of the rigid framework with the fixation and isolation effect, both a great chemical stability and bifunctional synergistic photocatalytic effects were obtained through the immobilization of anthraquinone into a MOF. Importantly, while decorating two carboxyl groups on anthraquinone, the carbonyl groups of anthraquinone photosensitizers were not involved in coordinating the self-assembly and orderly arranged on the wall of channels that were constructed through a π-π interaction between the anthraquinone moieties in the adjacent layers, which was beneficial to form and stabilize the excited-state radical intermediates in the molecule-fenced channels, and the close proximity between the catalytic sites and the substrates to abstract a hydrogen atom from the substrate through the hydrogen atom transfer process aimed at activating the inertness of C-H bonds. Moreover, high-density-distributed anthraquinone dyes in the confined channels would activate oxygen to form singlet oxygen (1O2) through an energy transfer pathway, further promoting inert C(sp3)-H bond oxidation efficiency. Under visible light irradiation, this anthraquinone-based MOF was successfully applied to explore activation and oxidation of a series of substrates containing benzylic C(sp3)-H bonds in the presence of air or oxygen to produce the corresponding carbonyl products. This bifunctional photocatalytic platform based on a heterogeneous MOF provides an available catalytic avenue to develop a scalable and sustainable synthetic strategy using green and sustainable oxygen as the potent oxidant.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wei Cai
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianwei Wei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zenggang Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
8
|
Tang Y, Zhao L, Ji G, Zhang Y, He C, Wang Y, Wei J, Duan C. Ligand regulated metal–organic frameworks for synergistic photoredox and nickel catalysis. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00173j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synergistic photoredox and nickel catalytic cross-coupling systems have created a great attraction as a promising methodology to produce the aryl C−N bonds under mild conditions as well as extreme challenge,...
Collapse
|
9
|
Xu X, Li Z, Huang H, Jing X, Duan C. A Novel Copper Metal-Organic Framework Catalyst for the Highly Efficient Conversion of CO2 with Propargylic Amines. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00678b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid increase in atmospheric carbon dioxide has resulted in the greenhouse effect. Hence, carbon dioxide capture and further fixation into valuable chemical products are particularly important for reducing atmospheric...
Collapse
|