1
|
Meenu PC, Kothoori NPS, Dahiya P, Mandal TK, Roy S. Engineering Lattice Strain in Co-Doped NiMoO 4 for boosting Methanol Oxidation Reaction. Chem Asian J 2025; 20:e202401520. [PMID: 39901744 PMCID: PMC12005583 DOI: 10.1002/asia.202401520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/05/2025]
Abstract
Nickel-based molybdates have attracted considerable attention owing to their distinctive isomorphous structure. In this study, pristine NiMoO4 and Co-doped Ni1-xCoxMoO4 were synthesized and investigated for their electrocatalytic activity in methanol oxidation and methanol-assisted water splitting reactions. Through a comprehensive exploration of the structure-property relationship, it was found that the optimal coexistence of α and β molybdate phases, induced by Co doping, led to lattice strain and facilitated the presence of essential catalytic descriptors such as higher oxidation states of Ni and surface oxygen vacancies within the lattice. These factors contributed to the enhanced electrocatalytic activity of Ni0.7Co0.3MoO4 in methanol oxidation and hydrogen evolution reaction. Detailed kinetic studies were conducted to further elucidate the mechanisms involved. Overall, these findings highlight the promising potential of Ni0.7Co0.3MoO4 as an effective catalyst for electrochemical methanol upgrading in conjunction with water splitting, with implications for sustainable energy conversion technologies.
Collapse
Affiliation(s)
| | | | - Preeti Dahiya
- Department of ChemistryIndian Institute of Technology RoorkeeRoorkee247 667India
| | - Tapas Kumar Mandal
- Department of ChemistryIndian Institute of Technology RoorkeeRoorkee247 667India
- Centre for NanotechnologyIndian Institute of Technology RoorkeeRoorkee247 667India
| | - Sounak Roy
- Department of ChemistryBirla Institute of Technology and Science PilaniHyderabad CampusHyderabad500078India
- Department of Chemistry and Materials Centre for Sustainable Energy & EnvironmentBirla Institute of Technology and Science (BITS) PilaniHyderabad CampusHyderabad500078India
| |
Collapse
|
2
|
Wang Z, Lian Y, Zhu X, Wang Q. MOF-Mediated Construction of NiCoMn-LDH Nanoflakes Assembled Co(OH)F Nanorods for Improved Supercapacitive Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:573. [PMID: 38607108 PMCID: PMC11013320 DOI: 10.3390/nano14070573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
The application of transition metal hydroxides has long been plagued by its poor conductivity and stability as well as severe aggregation tendency. In this paper, a novel hierarchical core-shell architecture, using an F-doped Co(OH)2 nanorod array (Co(OH)F) as the core and Mn/Ni co-doped Co(OH)2 nanosheets (NiCoMn-LDH) as the shell, was constructed via an MOF-mediated in situ generation method. The obtained Co(OH)F@ NiCoMn-LDH composites exhibited excellent supercapacitive performance with large specific capacitance as well as improved rate capability and long-term stability. The effect of the Ni/Mn ratio on the supercapacitive performance and energy storage kinetics was systematically investigated and the related mechanism was revealed.
Collapse
Affiliation(s)
| | | | - Xinde Zhu
- Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China; (Z.W.)
| | - Qi Wang
- Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China; (Z.W.)
| |
Collapse
|
3
|
Nawaz S, Khan Y, Khalid S, Malik MA, Siddiq M. Molybdenum disulfide (MoS 2) along with graphene nanoplatelets (GNPs) utilized to enhance the capacitance of conducting polymers (PANI and PPy). RSC Adv 2023; 13:28785-28797. [PMID: 37790101 PMCID: PMC10543645 DOI: 10.1039/d3ra04153k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023] Open
Abstract
Hybrid composites of molybdenum disulfide (MoS2), graphene nanoplatelets (GNPs) and polyaniline (PANI)/polypyrrole (PPy) have been synthesized as cost-effective electrode materials for supercapacitors. We have produced MoS2 from molybdenum dithiocarbamate by a melt method in an inert environment and then used a liquid exfoliation method to form its composite with graphene nanoplatelets (GNPs) and polymers (PANI and PPy). The MoS2 melt/GNP ratio in the resultant composites was 1 : 3 and the polymer was 10% by wt. of the original composite. XRD (X-ray diffraction analysis) confirmed the formation of MoS2 and SEM (scanning electron microscopy) revealed the morphology of the synthesized materials. The electrochemical charge storage performance of the synthesized composite materials was assessed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge (GCCD) measurements. Resultant composites showed enhanced electrochemical performances (specific capacitance = 236.23 F g-1, energy density = 64.31 W h kg-1 and power density = 3858.42 W kg-1 for MoS2 melt 5 mPP at a current density of 0.57 A g-1 and had 91.87% capacitance retention after 10 000 charge-discharge cycles) as compared to the produced MoS2; thus, they can be utilized as electrode materials for supercapacitors.
Collapse
Affiliation(s)
- Saima Nawaz
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92 5190642147
- Nanoscience and Technology Department, National Centre for Physics, QAU Campus Shahdra Valley Road Islamabad 45320 Pakistan
| | - Yaqoob Khan
- Nanoscience and Technology Department, National Centre for Physics, QAU Campus Shahdra Valley Road Islamabad 45320 Pakistan
| | - Sadia Khalid
- Nanoscience and Technology Department, National Centre for Physics, QAU Campus Shahdra Valley Road Islamabad 45320 Pakistan
| | - Mohammad Azad Malik
- Department of Chemistry, University of Zululand Private Bag X1001 KwaDlangezwa 3880 South Africa +44 7403781143
| | - Muhammad Siddiq
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92 5190642147
| |
Collapse
|
4
|
Arbi HM, Vijayalakshmi L, Anil Kumar Y, Alzahmi S, Gopi CVVM, Rusydi A, Obaidat IM. A Facile Two-Step Hydrothermal Synthesis of Co(OH) 2@NiCo 2O 4 Nanosheet Nanocomposites for Supercapacitor Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1981. [PMID: 37446497 DOI: 10.3390/nano13131981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
The composites of NiCo2O4 with unique structures were substantially investigated as promising electrodes. In this study, the unique structured nanosheets anchored on nickel foam (Ni foam) were prepared under the hydrothermal technique of NiCo2O4 and subsequent preparation of Co(OH)2. The Co(OH)2@NiCo2O4 nanosheet composite has demonstrated higher specific capacitances owing to its excellent specific surface region, enhanced rate properties, and outstanding electrical conductivities. Moreover, the electrochemical properties were analyzed in a three-electrode configuration to study the sample material. The as-designed Co(OH)2@NiCo2O4 nanosheet achieves higher specific capacitances of 1308 F·g-1 at 0.5 A·g-1 and notable long cycles with 92.83% capacity retention over 6000 cycles. The Co(OH)2@NiCo2O4 nanosheet electrode exhibits a long life span and high capacitances compared with the NiCo2O4 and Co(OH)2 electrodes, respectively. These outstanding electrochemical properties are mainly because of their porous construction and the synergistic effects between NiCo2O4 and Co(OH)2. Such unique Co(OH)2@NiCo2O4 nanosheets not only display promising applications in renewable storage but also reiterate to scientists of the unlimited potential of high-performance materials.
Collapse
Affiliation(s)
- Hammad Mueen Arbi
- Department of Physics, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - L Vijayalakshmi
- Department of Automotive Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| | - Yedluri Anil Kumar
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Salem Alzahmi
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Chandu V V Muralee Gopi
- Department of Electrical Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Andrivo Rusydi
- Advanced Research Initiative for Correlated-Electron Systems (ARiCES), Department of Physics, National University of Singapore, Singapore 117551, Singapore
| | - Ihab M Obaidat
- Department of Physics, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
5
|
Guan Y, Hu K, Su N, Zhang G, Han Y, An M. Review of NiS-Based Electrode Nanomaterials for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:979. [PMID: 36985879 PMCID: PMC10056300 DOI: 10.3390/nano13060979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
As a new type of energy storage device, supercapacitors have the advantages of high-power densities, high safety factors, and low maintenance costs, so they have attracted widespread attention among researchers. However, a major problem with supercapacitors is that their energy densities are not high enough, which limits their application. Therefore, it is crucial to expand the application scenarios of supercapacitors to increase their energy density as much as possible without diminishing their advantages. The classification and working principles of supercapacitors are introduced in this paper. The electrochemical properties of pure NiS materials, NiS composites with carbon materials, NiS composites with sulfide materials, and NiS composites with transition metal oxides for supercapacitors are summarized. This paper may assist in the design of new electrode materials for NiS-based supercapacitors.
Collapse
Affiliation(s)
- Yuhao Guan
- College of New Energy, Xi’an Shiyou University, Xi’an 710065, China
| | - Kexie Hu
- College of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Nan Su
- Engineering Science and Technology College of Equipment Engineering, Shanxi Vocational University of Engineering and Technology, Taiyuan 030619, China
| | - Gaohe Zhang
- College of New Energy, Xi’an Shiyou University, Xi’an 710065, China
| | - Yujia Han
- Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan 030032, China
| | - Minrong An
- College of New Energy, Xi’an Shiyou University, Xi’an 710065, China
| |
Collapse
|
6
|
Liu HY, Wu JY. Tunable Electronic Properties of Two-Dimensional GaSe 1-xTe x Alloys. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:818. [PMID: 36903697 PMCID: PMC10005243 DOI: 10.3390/nano13050818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In this work, we performed a theoretical study on the electronic properties of monolayer GaSe1-xTex alloys using the first-principles calculations. The substitution of Se by Te results in the modification of a geometric structure, charge redistribution, and bandgap variation. These remarkable effects originate from the complex orbital hybridizations. We demonstrate that the energy bands, the spatial charge density, and the projected density of states (PDOS) of this alloy are strongly dependent on the substituted Te concentration.
Collapse
Affiliation(s)
- Hsin-Yi Liu
- Department of Physics/QTC/Hi-GEM, National Cheng Kung University, Tainan 701, Taiwan
| | - Jhao-Ying Wu
- Center of General Studies, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| |
Collapse
|
7
|
Anil Kumar Y, Yadav AA, Al-Asbahi BA, Kang SW, Moniruzzaman M. Sulfur Nanoparticle-Decorated Nickel Cobalt Sulfide Hetero-Nanostructures with Enhanced Energy Storage for High-Performance Supercapacitors. Molecules 2022; 27:7458. [PMID: 36364283 PMCID: PMC9658846 DOI: 10.3390/molecules27217458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 02/04/2024] Open
Abstract
Transition-metal sulfides exaggerate higher theoretical capacities and were considered a type of prospective nanomaterials for energy storage; their inherent weaker conductivities and lower electrochemical active sites limited the commercial applications of the electrodes. The sheet-like nickel cobalt sulfide nanoparticles with richer sulfur vacancies were fabricated by a two-step hydrothermal technique. The sheet-like nanoparticles self-combination by ultrathin nanoparticles brought active electrodes entirely contacted with the electrolytes, benefiting ion diffusion and charges/discharges. Nevertheless, defect engineers of sulfur vacancy at the atomic level raise the intrinsic conductivities and improve the active sites for energy storage functions. As a result, the gained sulfur-deficient NiCo2S4 nanosheets consist of good specific capacitances of 971 F g-1 at 2 A g-1 and an excellent cycle span, retaining 88.7% of the initial capacitance over 3500 cyclings. Moreover, the values of capacitance results exhibited that the fulfilling characteristic of the sample was a combination of the hydrothermal procedure and the surface capacitances behavior. This novel investigation proposes a new perspective to importantly improve the electrochemical performances of the electrode by the absolute engineering of defects and morphologies in the supercapacitor field.
Collapse
Affiliation(s)
- Yedluri Anil Kumar
- Department of Physics, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Anuja A. Yadav
- Department of Automotive Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk-do, Korea
| | - Bandar Ali Al-Asbahi
- Department of Physics & Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Seok-Won Kang
- Department of Automotive Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk-do, Korea
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Gyeonggi-do, Korea
| |
Collapse
|
8
|
Moniruzzaman M, Anil Kumar Y, Pallavolu MR, Arbi HM, Alzahmi S, Obaidat IM. Two-Dimensional Core-Shell Structure of Cobalt-Doped@MnO 2 Nanosheets Grown on Nickel Foam as a Binder-Free Battery-Type Electrode for Supercapacitor Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183187. [PMID: 36144975 PMCID: PMC9505914 DOI: 10.3390/nano12183187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 05/25/2023]
Abstract
Herein, we present an interfacial engineering strategy to construct an efficient hydrothermal approach by in situ growing cobalt-doped@MnO2 nanocomposite on highly conductive nickel foam (Ni foam) for supercapacitors (SCs). The remarkably high specific surface area of Co dopant provides a larger contacting area for MnO2. In the meantime, the excellent retentions of the hierarchical phase-based pore architecture of the cobalt-doped surface could beneficially condense the electron transportation pathways. In addition, the nickel foam (Ni foam) nanosheets provide charge-transport channels that lead to the outstanding improved electrochemical activities of cobalt-doped@MnO2. The unique cobalt-doped@MnO2 nanocomposite electrode facilitates stable electrochemical architecture, multi-active electrochemical sites, and rapid electro-transports channels; which act as a key factor in enhancing the specific capacitances, stability, and rate capacities. As a result, the cobalt-doped@MnO2 nanocomposite electrode delivered superior electrochemical activities with a specific capacitance of 337.8 F g-1 at 0.5 A g-1; this is greater than pristine MnO2 (277.9 F g-1). The results demonstrate a worthy approach for the designing of high-performance SCs by the grouping of the nanostructured dopant material and metal oxides.
Collapse
Affiliation(s)
- Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Gyeonggi-do, Korea
| | - Yedluri Anil Kumar
- Department of Physics, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | | | - Hammad Mueen Arbi
- Department of Physics, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Salem Alzahmi
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Ihab M. Obaidat
- Department of Physics, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
9
|
Yang S, Qian X. Conductive PPy@cellulosic Paper Hybrid Electrodes with a Redox Active Dopant for High Capacitance and Cycling Stability. Polymers (Basel) 2022; 14:polym14132634. [PMID: 35808679 PMCID: PMC9268981 DOI: 10.3390/polym14132634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/29/2023] Open
Abstract
Polypyrrole@cellulose fibers (PPy@CFs) electrode materials are promising candidates in the energy storage. Various strategies have been pursued to improve their electrochemical performance. However, the poor conductivity, specific capacitance, and cyclic stability still hindered its application. Compared with the previous studies, we selected AQS with electrochemical activity as a dopant to improve these defects. It exhibits a high capacitance of 829.8 F g−1 at a current density of 0.2 A g−1, which is much higher than that of PPy@CFs electrode material (261.9 F g−1). Moreover, the capacitance retention of PPy:AQS/p-PTSA@CFs reaches up to 96.01% after 1000 cycles, indicating superior cyclic stability. Therefore, this work provides an efficient strategy for constructing high-performance electrode materials for energy storage.
Collapse
Affiliation(s)
- Shuaishuai Yang
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China;
| | - Xueren Qian
- Key Laboratory of Bio-Based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Correspondence: ; Tel.: +86-13304642918
| |
Collapse
|
10
|
Nawaz S, Khan Y, Abdelmohsen SAM, Khalid S, Björk EM, Rasheed MA, Siddiq M. Polyaniline inside the pores of high surface area mesoporous silicon as composite electrode material for supercapacitors. RSC Adv 2022; 12:17228-17236. [PMID: 35755593 PMCID: PMC9185315 DOI: 10.1039/d2ra01829b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Mesoporous silicon (mSi) obtained by the magnesiothermic reduction of mesoporous silica was used to deposit polyaniline (PANI) in its pores, the composite was tested for its charge storage application for high performance supercapacitor electrodes. The mesoporous silica as confirmed by Small Angle X-ray Scattering (SAXS) has a Brunauer-Emmett-Teller (BET) surface area of 724 m2g-1 and mean pore size of 5 nm. After magnesiothermic reduction to mSi, the BET surface area is reduced to 348 m2g-1 but the mesoporousity is retained with a mean pore size of 10 nm. The BET surface area of mesoporous silicon is among the highest for porous silicon prepared/reduced from silica. In situ polymerization of PANI inside the pores of mSi was achieved by controlling the polymerization conditions. As a supercapacitor electrode, the mSi-PANI composite exhibits better charge storage performance as compared to pure PANI and mesoporous silica-PANI composite electrodes. Enhanced electrochemical performance of the mSi-PANI composite is attributed to the high surface mesoporous morphology of mSi with a network structure containing abundant mesopores enwrapped by an electrochemically permeable polyaniline matrix.
Collapse
Affiliation(s)
- Saima Nawaz
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92 5190642147
- Nanoscience and Technology Department, National Centre for Physics QAU Campus, Shahdra Valley Road Islamabad 45320 Pakistan +92 512077389 +92 3455235423
| | - Yaqoob Khan
- Nanoscience and Technology Department, National Centre for Physics QAU Campus, Shahdra Valley Road Islamabad 45320 Pakistan +92 512077389 +92 3455235423
| | - Shaimaa A M Abdelmohsen
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University P. O. Box 84428 Riyadh 11681 Saudi Arabia
| | - Sadia Khalid
- Nanoscience and Technology Department, National Centre for Physics QAU Campus, Shahdra Valley Road Islamabad 45320 Pakistan +92 512077389 +92 3455235423
| | - Emma M Björk
- Nanostructured Materials, Department of Physics, Chemistry and Biology (IFM), Linköping University SE-581 83 Linköping Sweden
| | - Muhammad Asim Rasheed
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad 45650 Pakistan
| | - M Siddiq
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92 5190642147
| |
Collapse
|
11
|
Rodríguez-Gutiérrez I, Bedin KC, Mouriño B, Souza Junior JB, Souza FL. Advances in Engineered Metal Oxide Thin Films by Low-Cost, Solution-Based Techniques for Green Hydrogen Production. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1957. [PMID: 35745297 PMCID: PMC9229379 DOI: 10.3390/nano12121957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Functional oxide materials have become crucial in the continuous development of various fields, including those for energy applications. In this aspect, the synthesis of nanomaterials for low-cost green hydrogen production represents a huge challenge that needs to be overcome to move toward the next generation of efficient systems and devices. This perspective presents a critical assessment of hydrothermal and polymeric precursor methods as potential approaches to designing photoelectrodes for future industrial implementation. The main conditions that can affect the photoanode's physical and chemical characteristics, such as morphology, particle size, defects chemistry, dimensionality, and crystal orientation, and how they influence the photoelectrochemical performance are highlighted in this report. Strategies to tune and engineer photoelectrode and an outlook for developing efficient solar-to-hydrogen conversion using an inexpensive and stable material will also be addressed.
Collapse
Affiliation(s)
- Ingrid Rodríguez-Gutiérrez
- Centro de Ciências Naturais e Humanas (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
- Brazilian Nanotechnology National Laboratory (LNNANO), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (K.C.B.); (B.M.); (J.B.S.J.)
| | - Karen Cristina Bedin
- Brazilian Nanotechnology National Laboratory (LNNANO), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (K.C.B.); (B.M.); (J.B.S.J.)
| | - Beatriz Mouriño
- Brazilian Nanotechnology National Laboratory (LNNANO), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (K.C.B.); (B.M.); (J.B.S.J.)
| | - João Batista Souza Junior
- Brazilian Nanotechnology National Laboratory (LNNANO), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (K.C.B.); (B.M.); (J.B.S.J.)
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Campinas 13083-970, SP, Brazil
| | - Flavio Leandro Souza
- Centro de Ciências Naturais e Humanas (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
- Brazilian Nanotechnology National Laboratory (LNNANO), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (K.C.B.); (B.M.); (J.B.S.J.)
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Campinas 13083-970, SP, Brazil
| |
Collapse
|
12
|
Askari MB, Rozati SM, Di Bartolomeo A. Fabrication of Mn3O4-CeO2-rGO as Nanocatalyst for Electro-Oxidation of Methanol. NANOMATERIALS 2022; 12:nano12071187. [PMID: 35407306 PMCID: PMC9002773 DOI: 10.3390/nano12071187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/29/2022]
Abstract
Recently, the use of metal oxides as inexpensive and efficient catalysts has been considered by researchers. In this work, we introduce a new nanocatalyst including a mixed metal oxide, consisting of manganese oxide, cerium oxide, and reduced graphene oxide (Mn3O4-CeO2-rGO) by the hydrothermal method. The synthesized nanocatalyst was evaluated for the methanol oxidation reaction. The synergetic effect of metal oxides on the surface of rGO was investigated. Mn3O4-CeO2-rGO showed an oxidation current density of 17.7 mA/cm2 in overpotential of 0.51 V and 91% stability after 500 consecutive rounds of cyclic voltammetry. According to these results, the synthesized nanocatalyst can be an attractive and efficient option in the methanol oxidation reaction process.
Collapse
Affiliation(s)
- Mohammad Bagher Askari
- Department of Physics, Faculty of Science, University of Guilan, Rasht P.O. Box 41335-1914, Iran;
| | - Seyed Mohammad Rozati
- Department of Physics, Faculty of Science, University of Guilan, Rasht P.O. Box 41335-1914, Iran;
- Correspondence: (S.M.R.); (A.D.B.)
| | - Antonio Di Bartolomeo
- Department of Physics “E. R. Caianiello” and Interdepartmental Center NANOMATES, University of Salerno, 84084 Fisciano, SA, Italy
- Correspondence: (S.M.R.); (A.D.B.)
| |
Collapse
|
13
|
Successful Manufacturing Protocols of N-Rich Carbon Electrodes Ensuring High ORR Activity: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10040643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The exploration and development of different carbon nanomaterials happening over the past years have established carbon electrodes as an important electrocatalyst for oxygen reduction reaction. Metal-free catalysts are especially promising potential alternatives for replacing Pt-based catalysts. This article describes recent advances and challenges in the three main synthesis manners (i.e., pyrolysis, hydrothermal method, and chemical vapor deposition) as effective methods for the production of metal-free carbon-based catalysts. To improve the catalytic activity, heteroatom doping the structure of graphene, carbon nanotubes, porous carbons, and carbon nanofibers is important and makes them a prospective candidate for commercial applications. Special attention is paid to providing an overview on the recent major works about nitrogen-doped carbon electrodes with various concentrations and chemical environments of the heteroatom active sites. A detailed discussion and summary of catalytic properties in aqueous electrolytes is given for graphene and porous carbon-based catalysts in particular, including recent studies performed in the authors’ research group. Finally, we discuss pathways and development opportunities approaching the practical use of mainly graphene-based catalysts for metal–air batteries and fuel cells.
Collapse
|
14
|
Nunes WG, Pascon AM, Freitas B, De Sousa LG, Franco DV, Zanin H, Da Silva LM. Electrochemical Behavior of Symmetric Electrical Double-Layer Capacitors and Pseudocapacitors and Identification of Transport Anomalies in the Interconnected Ionic and Electronic Phases Using the Impedance Technique. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:676. [PMID: 35215004 PMCID: PMC8876237 DOI: 10.3390/nano12040676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023]
Abstract
A double-channel transmission line impedance model was applied to the study of supercapacitors to investigate the charge transport characteristics in the ionic and electronic conductors forming the electrode/solution interface. The macro homogeneous description of two closely mixed phases (Paasch-Micka-Gersdorf model) was applied to study the influence of disordered materials on the charge transport anomalies during the interfacial charge-discharge process. Different ex situ techniques were used to characterize the electrode materials used in electrical double-layer (EDLC) and pseudocapacitor (PC) devices. Two time constants in the impedance model were adequate to represent the charge transport in the different phases. The interfacial impedance considering frequency dispersion and blocked charge transfer conditions adequately described the charge storage at the interface. Deviations from the normal (Fickian) transport involving the ionic and electronic charge carriers were identified by the dispersive parameters (e.g., n and s exponents) used in the impedance model. The ionic and electronic transports were affected when the carbon-based electrical double-layer capacitor was converted into a composite with strong pseudocapacitive characteristics after the decoration process using NiO. The overall capacitance increased from 2.62 F g-1 to 536 F g-1 after the decoration. For the first time, the charge transport anomalies were unequivocally identified in porous materials used in supercapacitors with the impedance technique.
Collapse
Affiliation(s)
- Willian G. Nunes
- Carbon Sci-Tech Labs, Center for Innovation on New Energies, Advanced Energy Storage Division, School of Electrical and Computer Engineering, University of Campinas, Av. Albert Einstein 400, Campinas 13083-852, SP, Brazil; (W.G.N.); (A.M.P.); (B.F.)
| | - Aline M. Pascon
- Carbon Sci-Tech Labs, Center for Innovation on New Energies, Advanced Energy Storage Division, School of Electrical and Computer Engineering, University of Campinas, Av. Albert Einstein 400, Campinas 13083-852, SP, Brazil; (W.G.N.); (A.M.P.); (B.F.)
| | - Bruno Freitas
- Carbon Sci-Tech Labs, Center for Innovation on New Energies, Advanced Energy Storage Division, School of Electrical and Computer Engineering, University of Campinas, Av. Albert Einstein 400, Campinas 13083-852, SP, Brazil; (W.G.N.); (A.M.P.); (B.F.)
| | - Lindomar G. De Sousa
- Laboratory of Fundamental and Applied Electrochemistry, Department of Chemistry, Federal University of Jequitinhonha e Mucuri’s Valley, Rodovia MGT 367, Km 583, n° 5000, Alto da Jacuba, Diamantina 39100-000, MG, Brazil; (L.G.D.S.); (D.V.F.)
| | - Débora V. Franco
- Laboratory of Fundamental and Applied Electrochemistry, Department of Chemistry, Federal University of Jequitinhonha e Mucuri’s Valley, Rodovia MGT 367, Km 583, n° 5000, Alto da Jacuba, Diamantina 39100-000, MG, Brazil; (L.G.D.S.); (D.V.F.)
| | - Hudson Zanin
- Carbon Sci-Tech Labs, Center for Innovation on New Energies, Advanced Energy Storage Division, School of Electrical and Computer Engineering, University of Campinas, Av. Albert Einstein 400, Campinas 13083-852, SP, Brazil; (W.G.N.); (A.M.P.); (B.F.)
| | - Leonardo M. Da Silva
- Laboratory of Fundamental and Applied Electrochemistry, Department of Chemistry, Federal University of Jequitinhonha e Mucuri’s Valley, Rodovia MGT 367, Km 583, n° 5000, Alto da Jacuba, Diamantina 39100-000, MG, Brazil; (L.G.D.S.); (D.V.F.)
| |
Collapse
|
15
|
Geng W, Zhang Z, Yang Z, Tang H, He G. Non-aqueous synthesis of high-quality Prussian blue analogues for Na-ion batteries. Chem Commun (Camb) 2022; 58:4472-4475. [DOI: 10.1039/d2cc00699e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microwave-assisted solvothermal (MW-ST) method was developed to synthesize high-quality Prussian blue analogues. The tuned NaFeHCF exhibits low water content as well as good thermal stability. It delivers a high...
Collapse
|