1
|
Wei P, Zhuge X, Li Q, Sun X, Liu W, Liang K, Han J, Ren Y, Huang Y. Interface engineering and nanoconfinement strategies to synergistically enhance hydrogen evolution in acidic and basic media. J Colloid Interface Sci 2024; 662:814-821. [PMID: 38382366 DOI: 10.1016/j.jcis.2024.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/23/2024]
Abstract
As a potential catalyst for hydrogen evolution reaction (HER), tungsten nitride (W2N) has attracted extensive attention, due to its Pt-like characteristic. Nevertheless, insufficient active sites, slow electron transfer, and lack of scale-up nano-synthesis methods significantly limit its practical application. Constructing multi-component active centers and interface-rich heterojunctions to increase exposed active sites and modulate interface electrons is a very effective modification strategy. Therefore, a nano-heterostructure formed from tungsten nitride, tungsten phosphide and tungsten encapsulated in N, P co-doped carbon nanofiber (W2N/WP/W@NPC) was synthesized by a flexible and scalable electrospinning technology. Experimental results reveal that abundant heterojunctions are formed, electron transfer occurs between tungsten nitride and tungsten phosphide, and carbon nanofibers play a confinement role. The optimized W2N/WP/W@NPC-3 electrocatalyst demonstrates excellent HER catalytic activity and robust stability in both acidic and base media. Furthermore, the overall water splitting performance is tested using W2N/WP/W@NPC as the cathode through a two-electrode electrolyzer, which also exhibits impressive electrochemical performance.
Collapse
Affiliation(s)
- Peng Wei
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou 213164, China; State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiangqun Zhuge
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou 213164, China
| | - Qi Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xueping Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China.
| | - Wenjun Liu
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou 213164, China
| | - Kang Liang
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou 213164, China
| | - Jiantao Han
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Yurong Ren
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou 213164, China.
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
2
|
Synergistically coupling of WC-WP/NC hybrid catalyst for electrocatalytic hydrogen production. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
3
|
Zhang H, Liu W, Cao D, Cheng D. Carbon-based material-supported single-atom catalysts for energy conversion. iScience 2022; 25:104367. [PMID: 35620439 PMCID: PMC9127225 DOI: 10.1016/j.isci.2022.104367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In recent years, single-atom catalysts (SACs) with unique electronic structure and coordination environment have attracted much attention due to its maximum atomic efficiency in the catalysis fields. However, it is still a great challenge to rationally regulate the coordination environments of SACs and improve the loading of metal atoms for SACs during catalysis progress. Generally, carbon-based materials with excellent electrical conductivity and large specific surface area are widely used as catalyst supports to stabilize metal atoms. Meanwhile, carbon-based material-supported SACs have also been extensively studied and applied in various energy conversion reactions, such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), and nitrogen reduction reaction (NRR). Herein, rational synthesis methods and advanced characterization techniques were introduced and summarized in this review. Then, the theoretical design strategies and construction methods for carbon-based material-supported SACs in electrocatalysis applications were fully discussed, which are of great significance for guiding the coordination regulation and improving the loading of SACs. In the end, the challenges and future perspectives of SACs were proposed, which could largely contribute to the development of single atom catalysts at the turning point.
Collapse
Affiliation(s)
- Huimin Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Wenhao Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Dong Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|