1
|
Rokach M, Portioli C, Brahmachari S, Estevão BM, Decuzzi P, Barak B. Tackling myelin deficits in neurodevelopmental disorders using drug delivery systems. Adv Drug Deliv Rev 2024; 207:115218. [PMID: 38403255 DOI: 10.1016/j.addr.2024.115218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/27/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Interest in myelin and its roles in almost all brain functions has been greatly increasing in recent years, leading to countless new studies on myelination, as a dominant process in the development of cognitive functions. Here, we explore the unique role myelin plays in the central nervous system and specifically discuss the results of altered myelination in neurodevelopmental disorders. We present parallel developmental trajectories involving myelination that correlate with the onset of cognitive impairment in neurodevelopmental disorders and discuss the key challenges in the treatment of these chronic disorders. Recent developments in drug repurposing and nano/micro particle-based therapies are reviewed as a possible pathway to circumvent some of the main hurdles associated with early intervention, including patient's adherence and compliance, side effects, relapse, and faster route to possible treatment of these disorders. The strategy of drug encapsulation overcomes drug solubility and metabolism, with the possibility of drug targeting to a specific compartment, reducing side effects upon systemic administration.
Collapse
Affiliation(s)
- May Rokach
- Sagol School of Neuroscience, Tel-Aviv University, Israel
| | - Corinne Portioli
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sayanti Brahmachari
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Bianca Martins Estevão
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Boaz Barak
- Sagol School of Neuroscience, Tel-Aviv University, Israel; Faculty of Social Sciences, The School of Psychological Sciences, Tel-Aviv University, Israel.
| |
Collapse
|
2
|
Ozkan H, Di Francesco M, Willcockson H, Valdés-Fernández J, Di Francesco V, Granero-Moltó F, Prósper F, Decuzzi P, Longobardi L. Sustained inhibition of CC-chemokine receptor-2 via intraarticular deposition of polymeric microplates in post-traumatic osteoarthritis. Drug Deliv Transl Res 2023; 13:689-701. [PMID: 36109442 PMCID: PMC9794532 DOI: 10.1007/s13346-022-01235-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 12/31/2022]
Abstract
Posttraumatic osteoarthritis (PTOA) is mostly treated via corticosteroid administration, and total joint arthroplasty continues to be the sole effective intervention in severe conditions. To assess the therapeutic potential of CCR2 targeting in PTOA, we used biodegradable microplates (µPLs) to achieve a slow and sustained intraarticular release of the CCR2 inhibitor RS504393 into injured knees and followed joint damage during disease progression. RS504393-loaded µPLs (RS-µPLs) were fabricated via a template-replica molding technique. A mixture of poly(lactic-co-glycolic acid) (PLGA) and RS504393 was deposited into 20 × 10 μm (length × height) wells in a polyvinyl alcohol (PVA) square-patterned template. After physicochemical and toxicological characterizations, the RS504393 release profile from µPL was assessed in PBS buffer. C57BL/6 J male mice were subjected to destabilization of the medial meniscus (DMM)/sham surgery, and RS-µPLs (1 mg/kg) were administered intraarticularly 1 week postsurgery. Administrations were repeated at 4 and 7 weeks post-DMM. Drug free-µPLs (DF-µPLs) and saline injections were performed as controls. Mice were euthanized at 4 and 10 weeks post-DMM, corresponding to the early and severe PTOA stages, respectively. Knees were evaluated for cartilage structure score (ACS, H&E), matrix loss (safranin O score), osteophyte formation and maturation from cartilage to bone (cartilage quantification), and subchondral plate thickness. The RS-µPL architecture ensured the sustained release of CCR2 inhibitors over several weeks, with ~ 20% of RS504393 still available at 21 days. This prolonged release improved cartilage structure and reduced bone damage and synovial hyperplasia at both PTOA stages. Extracellular matrix loss was also attenuated, although with less efficacy. The results indicate that local sustained delivery is needed to optimize CCR2-targeted therapies.
Collapse
Affiliation(s)
- Huseyin Ozkan
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-, Chapel Hill, 3300 Thurston Bowels Bldg, Campus, Box 7280, Chapel Hill, NC 27599 USA
| | - Martina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano Di Tecnologia, Genoa, Italy
| | - Helen Willcockson
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-, Chapel Hill, 3300 Thurston Bowels Bldg, Campus, Box 7280, Chapel Hill, NC 27599 USA
| | - José Valdés-Fernández
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-, Chapel Hill, 3300 Thurston Bowels Bldg, Campus, Box 7280, Chapel Hill, NC 27599 USA ,Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| | - Valentina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano Di Tecnologia, Genoa, Italy
| | - Froilán Granero-Moltó
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain ,Department of Orthopedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain ,Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain ,Instituto de Investigacion Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Felipe Prósper
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain ,Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain ,Instituto de Investigacion Sanitaria de Navarra (IdiSNA), Pamplona, Spain ,Department of Hematology, Clínica Universidad de Navarra, Pamplona, Spain ,Program of Hemato-Oncology, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano Di Tecnologia, Genoa, Italy
| | - Lara Longobardi
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-, Chapel Hill, 3300 Thurston Bowels Bldg, Campus, Box 7280, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Sharifnezhad AH, Dashtian K, Amourizi F, Zare-Dorabei R. Development of peptide impregnated V/Fe bimetal Prussian blue analogue as Robust nanozyme for colorimetric fish freshness assessment. Anal Chim Acta 2022; 1237:340555. [DOI: 10.1016/j.aca.2022.340555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 11/01/2022]
|
4
|
Asal HA, Shoueir KR, El-Hagrasy MA, Toson EA. Controlled synthesis of in-situ gold nanoparticles onto chitosan functionalized PLGA nanoparticles for oral insulin delivery. Int J Biol Macromol 2022; 209:2188-2196. [PMID: 35504421 DOI: 10.1016/j.ijbiomac.2022.04.200] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022]
Abstract
Chitosan-based nanoparticles (chitosan nanoparticles (ChNps), chitosan gold Nps (ChAuNps), and chitosan gold Nps functionalized with poly lactic-co-glycolic acid (PLGA) (ChAuNps/PLGA)) were prepared as nanocarriers for insulin to improve its oral uptake. The emulsion solvent diffusion method was employed to functionalize the Nps with PLGA. TEM, SEM, DLS, and zeta potential were conducted to characterize the Nps. The morphological analysis confirmed the formation of spherical Nps with hydrodynamic particle sizes of 138±23, 16±2.2, and 50±9.3 nm for ChNps, ChAuNps, and ChAuNps/PLGA, respectively. Zeta potential measurements indicated two types of Nps, regardless of insulin entrapment, positively charged, (ChNps (+36 ± 4.2, +31 ± 2.2mv)) and ChAuNps (+37 ± 4.3, +33 ± 2.5mv) and negatively charged (ChAuNps/PLGA (-31 ± 2.7, -26 ± 2.1 mv)). The in vitro studies were assessed by measuring the entrapment efficiencies (EE%) and the release profiles of insulin at different pH values. EE% for ChNps, ChAuNps, and ChAuNps/PLGA were 97 ± 1.5, 98.4 ± 1.9, and 99 ± 1.2%, respectively. At an acidic medium, a significant level of insulin retention was observed (96 ± 0.08%) for ChAuNps/PLGA. While a high amount was released at higher pH values over an extended period of time. In vivo studies, diabetic rats treated with insulin-loaded Nps had reduced blood glucose level (BGL) (38 ± 2.8, 35 ± 6.5, and 27 ± 5.6%) for ChNps ChAuNps and ChAuNps/PLGA, respectively. The pharmacological availability (PA%) and bioavailability (FR%) for insulin-loaded ChAuNps/PLGA were 15.8 ± 0.71% and 7.7 ± 0.93%, respectively. Altogether, emphasize the role of biocompatible Nps and their efficiency in the convenient delivery of insulin, thus lowering the BGL in a safe condition.
Collapse
Affiliation(s)
- Hajar A Asal
- Department of Chemistry, Faculty of Science, Damietta University, Damietta, Egypt
| | - Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt; Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS UMR 7515-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.
| | - Maha A El-Hagrasy
- Department of Chemistry, Faculty of Science, Damietta University, Damietta, Egypt
| | - Elshahat A Toson
- Department of Chemistry, Faculty of Science, Damietta University, Damietta, Egypt
| |
Collapse
|
5
|
Bellotti E, Contarini G, Geraci F, Torrisi SA, Piazza C, Drago F, Leggio GM, Papaleo F, Decuzzi P. Long-lasting rescue of schizophrenia-relevant cognitive impairments via risperidone-loaded microPlates. Drug Deliv Transl Res 2022; 12:1829-1842. [PMID: 34973133 PMCID: PMC9242964 DOI: 10.1007/s13346-021-01099-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a disorder characterized by cognitive impairment and psychotic symptoms that fluctuate over time and can only be mitigated with the chronic administration of antipsychotics. Here, we propose biodegradable microPlates made of PLGA for the sustained release of risperidone over several weeks. Two microPlate configurations - short: 20 × 20 × 10 μm; tall: 20 × 20 × 20 μm - are engineered and compared to conventional ~ 10 μm PLGA microspheres in terms of risperidone loading and release. Tall microPlates realize the slowest release documenting a 35% risperidone delivery at 100 days with a residual rate of 30 ng/ml. Short microPlates and microspheres present similar release profiles with over 50% of the loaded risperidone delivered within the first 40 days. Then, the therapeutic efficacy of one single intraperitoneal injection of risperidone microPlates is compared to the daily administration of free risperidone in heterozygous knockout mice for dysbindin-1, a clinically relevant mouse model of cognitive and psychiatric liability. In temporal order object recognition tasks, mice treated with risperidone microPlates outperform those receiving free risperidone up to 2, 4, 8, and 12 weeks of observation. This suggests that the sustained release of antipsychotics from one-time microPlate deposition can rescue cognitive impairment in dysbindin mice for up to several weeks. Overall, these results demonstrate that risperidone-loaded microPlates are a promising platform for improving cognitive symptoms associated to schizophrenia. Moreover, the long-term efficacy with one single administration could be of clinical relevance in terms of patient's compliance and adherence to the treatment regimen. Single injection of long-acting risperidone-loaded µPL ameliorates the dysbindin-induced deficit in a clinically relevant mouse model of cognitive and psychiatric liability for up to 12 weeks.
Collapse
Affiliation(s)
- Elena Bellotti
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| | - Gabriella Contarini
- Department of Biomedical and Technological Sciences, Università Di Catania, Via Santa Sofia 97, 95125, Catania, Italy
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Federica Geraci
- Department of Biomedical and Technological Sciences, Università Di Catania, Via Santa Sofia 97, 95125, Catania, Italy
| | - Sebastiano Alfio Torrisi
- Department of Biomedical and Technological Sciences, Università Di Catania, Via Santa Sofia 97, 95125, Catania, Italy
| | - Cateno Piazza
- Analytical Department, Consortium Unifarm, Università Di Catania, Viale A. Doria 21, 95125, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Technological Sciences, Università Di Catania, Via Santa Sofia 97, 95125, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Technological Sciences, Università Di Catania, Via Santa Sofia 97, 95125, Catania, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| |
Collapse
|