1
|
Luo ZH, Zheng M, Zhou MX, Sheng XT, Chen XL, Shao JJ, Wang TS, Zhou G. 2D Nanochannel Interlayer Realizing High-Performance Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417321. [PMID: 39846826 DOI: 10.1002/adma.202417321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/02/2025] [Indexed: 01/24/2025]
Abstract
Commercialization of lithium-sulfur (Li-S) batteries is largely limited by polysulfide shuttling and sluggish kinetics. Herein, 2D nanochannel interlayer composed of alternatively-stacked porous silica nanosheets (PSN) and Ti3C2Tx-MXene are developed. The 2D nanochannels with selective cation transport characteristics facilitate lithium ion rapid transport, while reject the translocation of polysulfide anions across the separator. The hydroxylated MXene shifts the p-band center of the surface O on PSN closer to the Fermi level, leading to strong absorptive/catalytic effect for polysulfides and thus fast polysulfide transformation kinetics. Together with the ion/electron bi-conduction function of PSN/MXene, the Li-S batteries deliver high initial capacity of 1443 mAh g-1 at 0.1 C, low-capacity decay rate of 0.049% per cycle over 800 cycles at 2 C, and excellent rate capability. At a high sulfur loading of 5.2 mg cm-2, the cells present higher areal specific capacity than commercial lithium ion batteries. The pouch cells with lean electrolyte (E/S = 3.9 µL mg-1) yield a capacity of 2-Ah at 100 mA, high energy density and excellent cycling stability. This contribution opens up new avenues for expanding application of 2D nanofluidics in electrochemical energy storage and conversion.
Collapse
Affiliation(s)
- Zhi-Hong Luo
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Min Zheng
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Ming-Xia Zhou
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Xi-Tong Sheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xiao-Li Chen
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Jiao-Jing Shao
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Tian-Shuai Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Guangmin Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
2
|
Zhu Y, Wang C, Guo D, Chen X, Wang S. Solid-State Electrolytes: Probing Interface Regulation from Multiple Perspectives. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43114-43133. [PMID: 39110026 DOI: 10.1021/acsami.4c07428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Solid-state electrolytes (SSEs), as the heart of all-solid-state batteries (ASSBs), are recognized as the next-generation energy storage solution, offering high safety, extended cycle life, and superior energy density. SSEs play a pivotal role in ion transport and electron separation. Nonetheless, interface compatibility and stability issues pose significant obstacles to further enhancing ASSB performance. Extensive research has demonstrated that interface control methods can effectively elevate ASSB performance. This review delves into the advancements and recent progress of SSEs in interfacial engineering over the past years. We discuss the detailed effects of various regulation strategies and directions on performance, encompassing enhancing Li+ mobility, reducing energy barriers, immobilizing anions, introducing interlayers, and constructing unique structures. This review offers fresh perspectives on the development of high-performance lithium-metal ASSBs.
Collapse
Affiliation(s)
- Yuchuan Zhu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Cong Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Daying Guo
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Xi'an Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
3
|
Wang X, Huang S, Peng Y, Min Y, Xu Q. Research Progress on the Composite Methods of Composite Electrolytes for Solid-State Lithium Batteries. CHEMSUSCHEM 2024; 17:e202301262. [PMID: 38415928 DOI: 10.1002/cssc.202301262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/20/2024] [Accepted: 02/28/2024] [Indexed: 02/29/2024]
Abstract
In the current challenging energy storage and conversion landscape, solid-state lithium metal batteries with high energy conversion efficiency, high energy density, and high safety stand out. Due to the limitations of material properties, it is difficult to achieve the ideal requirements of solid electrolytes with a single-phase electrolyte. A composite solid electrolyte is composed of two or more different materials. Composite electrolytes can simultaneously offer the advantages of multiple materials. Through different composite methods, the merits of various materials can be incorporated into the most essential part of the battery in a specific form. Currently, more and more researchers are focusing on composite methods for combining components in composite electrolytes. The ion transport capacity, interface stability, machinability, and safety of electrolytes can be significantly improved by selecting appropriate composite methods. This review summarizes the composite methods used for the components of composite electrolytes, such as filler blending, embedded framework, and multilayer bonding. It also discusses the future development trends of all-solid-state lithium batteries (ASSLBs).
Collapse
Affiliation(s)
- Xu Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- China Three Gorges Corporation Science and Technology Research Institute, Beijing, 101100, P. R. China
| | - Sipeng Huang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Yiting Peng
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse Shanghai, Institute of Pollution Control and Ecological Security College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse Shanghai, Institute of Pollution Control and Ecological Security College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
4
|
Jie Y, Tang C, Xu Y, Guo Y, Li W, Chen Y, Jia H, Zhang J, Yang M, Cao R, Lu Y, Cho J, Jiao S. Progress and Perspectives on the Development of Pouch-Type Lithium Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202307802. [PMID: 37515479 DOI: 10.1002/anie.202307802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
Lithium (Li) metal batteries (LMBs) are the "holy grail" in the energy storage field due to their high energy density (theoretically >500 Wh kg-1 ). Recently, tremendous efforts have been made to promote the research & development (R&D) of pouch-type LMBs toward practical application. This article aims to provide a comprehensive and in-depth review of recent progress on pouch-type LMBs from full cell aspect, and to offer insights to guide its future development. It will review pouch-type LMBs using both liquid and solid-state electrolytes, and cover topics related to both Li and cathode (including LiNix Coy Mn1-x-y O2 , S and O2 ) as both electrodes impact the battery performance. The key performance criteria of pouch-type LMBs and their relationship in between are introduced first, then the major challenges facing the development of pouch-type LMBs are discussed in detail, especially those severely aggravated in pouch cells compared with coin cells. Subsequently, the recent progress on mechanistic understandings of the degradation of pouch-type LMBs is summarized, followed with the practical strategies that have been utilized to address these issues and to improve the key performance criteria of pouch-type LMBs. In the end, it provides perspectives on advancing the R&Ds of pouch-type LMBs towards their application in practice.
Collapse
Affiliation(s)
- Yulin Jie
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chao Tang
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Ningde Amperex Technology limited (ATL), Ningde, Fujian, 352100, China
| | - Yaolin Xu
- Department of Electrochemical Energy Storage (CE-AEES), Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Hahn-Meitner-Platz 1, 14109, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA-02139, USA
| | - Youzhang Guo
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wanxia Li
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yawei Chen
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Haojun Jia
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA-02139, USA
| | - Jing Zhang
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin, 300384, China
| | - Ming Yang
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin, 300384, China
| | - Ruiguo Cao
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuhao Lu
- Ningde Amperex Technology limited (ATL), Ningde, Fujian, 352100, China
| | - Jaephil Cho
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Shuhong Jiao
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
5
|
Pu J, Huang Z, Wang J, Tan Y, Fan S, Wang Z. Core-shell oxygen-deficient Fe 2O 3 polyhedron serves as an efficient host for sulfur cathode. Chem Commun (Camb) 2023; 60:180-183. [PMID: 38038240 DOI: 10.1039/d3cc05476d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Herein, an oxygen-defect-rich core-shell Fe2O3-x@C polyhedral sulfur host was prepared, which effectively promoted electrochemical conversion and further inhibited the "shuttle effect" in lithium-sulfur (Li-S) batteries. Fe2O3-x@C@S provided a high initial capacity of 1395 mA h g-1 and a low attenuation of ∼0.067% per cycle.
Collapse
Affiliation(s)
- Jun Pu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Ziyang Huang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jie Wang
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246000, China
| | - Yun Tan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Shanshan Fan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhenghua Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
6
|
Guo C, Luo ZH, Zhou MX, Wu X, Shi Y, An Q, Shao JJ, Zhou G. Clay-Originated Two-Dimensional Holey Silica Separator for Dendrite-Free Lithium Metal Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301428. [PMID: 37127872 DOI: 10.1002/smll.202301428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Lithium metal anode is the ultimate choice to obtain next-generation high-energy-density lithium batteries, while the dendritic lithium growth owing to the unstable lithium anode/electrolyte interface largely limits its practical application. Separator is an important component in batteries and separator engineering is believed to be a tractable and effective way to address the above issue. Separators can play the role of ion redistributors to guide the transport of lithium ions and regulate the uniform electrodeposition of Li. The electrolyte wettability, thermal shrinkage resistance, and mechanical strength are of importance for separators. Here, clay-originated two-dimensional (2D) holey amorphous silica nanosheets (ASN) to develop a low-cost and eco-friendly inorganic separator is directly adopted. The ASN-based separator has higher porosity, better electrolyte wettability, much higher thermal resistance, larger lithium transference number, and ionic conductivity compared with commercial separator. The large amounts of holes and rich surface oxygen groups on the ASN guide the uniform distribution of lithium-ion flux. Consequently, the Li//Li cell with this separator shows stable lithium plating/stripping, and the corresponding Li//LiFePO4 , Li//LiCoO2, and Li//NCM523 full cells also show high capacity, excellent rate performance, and outstanding cycling stability, which is much superior to that using the commercial separator.
Collapse
Affiliation(s)
- Chong Guo
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Zhi-Hong Luo
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Ming-Xia Zhou
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Xinru Wu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yan Shi
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Qinyou An
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiao-Jing Shao
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
7
|
Wang N, Chen X, Sun Q, Song Y, Xin T. Fast Li + Transport Polyurethane-Based Single-Ion Conducting Polymer Electrolyte with Sulfonamide Side chains in the Hard Segment for Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39837-39846. [PMID: 37552620 DOI: 10.1021/acsami.3c06956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Single-ion conducting polymer electrolytes (SICPEs) are considered as one of the most promising candidates for achieving lithium metal batteries (LMBs). However, the application of traditional SICPEs is hindered by their low ionic conductivity and poor mechanical stability. Herein, a self-standing and flexible polyurethane-based single-ion conductor membrane was prepared via covalent tethering of the trifluoromethanesulfonamide anion to polyurethane, which was synthesized using a facile reaction of diisocyanates with poly(ethylene oxide) and 3,5-diaminobenzoic acid (or 3,5-dihydroxybenzoic acid). The polymer electrolyte exhibited excellent ionic conductivity, mechanical properties, lithium-ion transference number, thermal stability, and a broad electrochemical window because of the bulky anions and unique two-phase structures with lithium-ion nanochannels in the hard domains. Consequently, the plasticized electrolyte membrane showed exceptional stability and reliability in a Li||Li symmetric battery. The assembled LiFePO4||Li battery exhibited an outstanding capacity (∼180 mA h g-1), Coulombic efficiency (>96%), and capacity retention. This research provides a promising polymer electrolyte for high-performance LMBs.
Collapse
Affiliation(s)
- Naijie Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Xiangqun Chen
- School of Materials Science and Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Qiu Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Ying Song
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Tiezhu Xin
- School of Materials Science and Engineering, Harbin Institute of Technology, 150001 Harbin, China
| |
Collapse
|
8
|
Silori GK, Thoka S, Ho KC. Morphological Features of SiO 2 Nanofillers Address Poor Stability Issue in Gel Polymer Electrolyte-Based Electrochromic Devices. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37205840 DOI: 10.1021/acsami.3c04685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanofillers' applicability in gel polymer electrolyte (GPE)-based devices skyrocketed in the last decade as soon as their remarkable benefits were realized. However, their applicability in GPE-based electrochromic devices (ECDs) has hardly seen any development due to challenges such as optical inhomogeneity brought by incompetent nanofiller sizes, transmittance drop due to higher filler loading (usually required), and poor methodologies of electrolyte fabrication. To address such issues, herein, we demonstrate a reinforced polymer electrolyte tailored through poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP),1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), and four types of mesoporous SiO2 nanofillers, porous (distinct morphologies) and nonporous, two each. The synthesized electrochromic species 1,1'-bis(4-fluorobenzyl)-4,4'-bipyridine-1,1'-diium tetrafluoroborate (BzV, 0.05 M), counter redox species ferrocene (Fc, 0.05 M), and supporting electrolyte (TBABF4, 0.5 M) were first dissolved in propylene carbonate (PC) and then immobilized in an electrospun PVDF-HFP/BMIMBF4/SiO2 host. We distinctly observed that spherical (SPHS) and hexagonal pore (MCMS) morphologies of fillers endowed higher transmittance change (ΔT) and coloration efficiency (CE) in utilized ECDs; particularly for the MCMS-incorporated ECD (GPE-MCMS/BzV-Fc ECD), ΔT reached ∼62.5% and CE soared to 276.3 cm2/C at 603 nm. The remarkable benefit of filler's hexagonal morphology was also seen in the GPE-MCMS/BzV-Fc ECD, which not only marked an astounding ionic conductivity (σ) of ∼13.5 × 10-3 S cm-1 at 25 °C, thus imitating the solution-type ECD's behavior, but also retained ∼77% of initial ΔT after 5000 switching cycles. The enhancement in ECD's performance resulted from merits brought by filler geometries such as the proliferation of Lewis acid-base interaction sites due to the high surface-to-volume ratio, the creation of percolating tunnels, and the emergence of capillary forces triggering facile ion transportation in the electrolyte matrix.
Collapse
Affiliation(s)
- Gaurav Kumar Silori
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | | | - Kuo-Chuan Ho
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center of Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
9
|
Zheng F, Li C, Li Z, Cao X, Luo H, Liang J, Zhao X, Kong J. Advanced Composite Solid Electrolytes for Lithium Batteries: Filler Dimensional Design and Ion Path Optimization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206355. [PMID: 36843226 DOI: 10.1002/smll.202206355] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/14/2023] [Indexed: 05/25/2023]
Abstract
Composite solid electrolytes are considered to be the crucial components of all-solid-state lithium batteries, which are viewed as the next-generation energy storage devices for high energy density and long working life. Numerous studies have shown that fillers in composite solid electrolytes can effectively improve the ion-transport behavior, the essence of which lies in the optimization of the ion-transport path in the electrolyte. The performance is closely related to the structure of the fillers and the interaction between fillers and other electrolyte components including polymer matrices and lithium salts. In this review, the dimensional design of fillers in advanced composite solid electrolytes involving 0D-2D nanofillers, and 3D continuous frameworks are focused on. The ion-transport mechanism and the interaction between fillers and other electrolyte components are highlighted. In addition, sandwich-structured composite solid electrolytes with fillers are also discussed. Strategies for the design of composite solid electrolytes with high room temperature ionic conductivity are summarized, aiming to assist target-oriented research for high-performance composite solid electrolytes.
Collapse
Affiliation(s)
- Feifan Zheng
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Chunwei Li
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zongcheng Li
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xin Cao
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hebin Luo
- Fujian Blue Ocean & Black Stone Technology Co., Ltd. , Changtai, Fujian Province, 363900, China
| | - Jin Liang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiaodong Zhao
- Fujian Blue Ocean & Black Stone Technology Co., Ltd. , Changtai, Fujian Province, 363900, China
| | - Jie Kong
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
10
|
Song Y, Zhu S, Long X, Luo Z, Sun Q, Geng C, Li H, Han Z, Ouyang Q, Zhou G, Shao J. Mesoporous Hydroxyl Vanadium Oxide/Nitrogen-Doped Graphene Enabled Fast Polysulfide Conversion Kinetics for High-Performance Lithium-Sulfur Batteries. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|