1
|
Karmakar R, Dixit M, Eswar K, Bhattacharjee B, Apoorva B, Gubige M, Sengottaiyan A, Pati F, Rengan AK. Enhanced wound healing properties by sodium alginate-carboxymethyl cellulose hydrogel enriched with decellularized amniotic membrane. Eur J Pharm Biopharm 2025; 207:114621. [PMID: 39725277 DOI: 10.1016/j.ejpb.2024.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Skin, as the primary interface with the external environment, is susceptible to damage, posing a formidable challenge for complete restoration in adult skin injuries. Wound healing remains a clinical challenge, necessitating advanced biomaterials to support cell proliferation, modulate inflammation, and combat infections. Among several options, hydrogel can be a capable contender for biological dressings. Here, we developed and evaluated a novel hydrogel composed of sodium alginate (SA) and carboxymethyl cellulose (CMC), enriched with decellularized extracellular matrix of amniotic membrane (dAM), using calcium chloride (CaCl2) as a crosslinker. An incorporation of dAM imparted biomimetic qualities, as evidenced by SEM, showing a fibrous extracellular matrix-like structure. Rheological studies demonstrated the optimal viscosity of SA-CMC-dAM for cell proliferation and adhesion, overcoming limitations of SA and CMC alone. The hydrogel exhibited the highest moisture absorption (12.27±0.59 %) and enhanced hydrophilicity, as confirmed by the contact angle assay, ensuring suitability for wound applications. Biological assessments revealed superior fibroblast migration in scratch assays and significant anti-biofilm activity (∼70 % reduction in E. coli biofilms) alongside antimicrobial efficacy, supported by FDA/PI assays. The zebrafish embryo studies validated its biocompatibility (20 μg/ml) and demonstrated potent anti-inflammatory effects, with a marked reduction in neutrophil recruitment (∼25 %) in tail transection models compared to controls. These findings suggest that the SA-CMC-dAM hydrogel synergises structural, antibacterial, and anti-inflammatory properties, making it a promising candidate for wound healing applications. The biomimetic and multifunctional design provides a strong basis for further translational studies in mammalian systems.
Collapse
Affiliation(s)
- Rounik Karmakar
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Mansi Dixit
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India
| | - Kalyani Eswar
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India
| | - Basu Bhattacharjee
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India
| | - Basa Apoorva
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India
| | - Mounika Gubige
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India
| | | | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| |
Collapse
|
2
|
Sankaranarayanan SA, Eswar K, Srivastava R, Thanekar AM, Gubige M, Bantal V, Rengan AK. In situ thermosensitive H 2O 2/NO self-sufficient hydrogel for photothermal ferroptosis of triple-negative breast cancer. NANOSCALE 2024; 16:18899-18909. [PMID: 39311638 DOI: 10.1039/d4nr02907k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
L-Arginine (LA), a semi-essential amino acid in the human body, holds significant potential in cancer therapy due to its ability to generate nitric oxide (NO) continuously in the presence of inducible NO synthase (iNOS) or reactive oxygen species (ROS). However, the efficiency of NO production in tumor tissue is severely constrained by the hypoxic and H2O2-deficient tumor microenvironment (TME). To address this issue, we have developed calcium peroxide (CaO2) nanoparticles capable of supplying O2/H2O2, which encapsulate and oxidize an LA-modified lipid bilayer to enable controlled localized NO generation in the presence of ROS, synergising with a ferroptosis inducer, RSL-3 (CPIR NPs). The synthesized nanoparticles were tested in vitro for their anticancer activity in 4T1 cells. To address challenges related to specificity and frequent dosing, we developed an in situ thermosensitive injectable hydrogel incorporating CPIR nanoparticles. Cross-linking at 60 °C creates a self-sufficient formulation, releasing NO/H2O2 to combat tumor hypoxia. RSL-3 induces ferroptosis, contributing to a synergistic photothermal effect and eliminating tumor in vivo.
Collapse
Affiliation(s)
- Sri Amruthaa Sankaranarayanan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| | - Kalyani Eswar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| | - Rupali Srivastava
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| | - Ajinkya Madhukar Thanekar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| | - Mounika Gubige
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| | - Veeresh Bantal
- G Pulla Reddy College of Pharmacy, Mehdipatinam, Hyderabad, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| |
Collapse
|
3
|
Pebam M, Khatun S, Ali MS, Srivastava A, Rengan AK. Self-assembled IR dye/mitoxantrone loaded Porphysomes nanosystem for enhanced combinatorial chemo-photothermal cancer therapy. Colloids Surf B Biointerfaces 2024; 241:113985. [PMID: 38838443 DOI: 10.1016/j.colsurfb.2024.113985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Chemo-photothermal therapy (PTT) is an emerging non-invasive cancer treatment modality. Light-responsive porphysomes (DPP IR Mtx @Lipo NPs) nanosystems ablate breast cancer cells upon oxidative stress and hyperthermia. The unique self-assembled porphysomes were formed spherical shape in the size range of 150 ± 30 nm formed by the co-assembly of porphyrins along with IR 775 and chemotherapeutic drug, Mitoxantrone (Mtx), forming a camouflaged nanosystem (DPP IR Mtx @Lipo NPs, porphysomes). The advent of the prepared porphysomes aids in proper tuning of NIR absorbance improving singlet oxygen species generation among other anticancer drugs. The eminent release of DPP and adjuvant chemo-drug, Mitoxantrone from the self-assembled porphysomes is triggered by IR 775, a NIR photosensitizer upon laser irradiation. These multifunctional DPP IR Mtx @Lipo NPs have an efficient photothermal conversion efficiency of 65.8% as well as bioimaging properties. In-vitro studies in 2D and 3D models showed a significant cell death of 4T1 cells via the apoptotic pathway when irradiated with NIR laser, causing minimal damage to nearby healthy cells. DPP IR Mtx @Lipo NPs exhibited commingled PDT/PTT interdependent via NIR laser exposure, leading to mitochondrial disruption. Interestingly, the transient transfection using p53-GFP in cancer cells followed by DPP IR Mtx @Lipo NPs treatment causes rapid cell death. The activation of p53-dependent apoptosis pathways was vividly expressed, evidenced by the upregulation of Bax and increased pattern of Caspase-3 cleavage. This effect was pronounced upon transfection and induction with DPP IR Mtx @Lipo NPs, particularly in comparison to non-transfected malignant breast cancer 4T1 cells.
Collapse
Affiliation(s)
- Monika Pebam
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Mohammad Sadik Ali
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Aditya Srivastava
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India.
| |
Collapse
|
4
|
Chen G, Wang X, Li J, Xu Y, Lin Y, Wang F. Intelligent hydrogels for treating malignant melanoma. ENGINEERED REGENERATION 2024; 5:295-305. [DOI: 10.1016/j.engreg.2024.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
5
|
Khatun S, Pebam M, Sankaranarayanan SA, Pogu SV, Bantal VS, Rengan AK. Glutathione - IR 797 coupled Casein Nano-Trojan for augmenting the therapeutic efficacy of camptothecin in highly invasive triple negative breast cancer. BIOMATERIALS ADVANCES 2024; 159:213802. [PMID: 38401401 DOI: 10.1016/j.bioadv.2024.213802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The rapid metastasis & heterogenic constitution of triple negative breast cancer (TNBC) limits drug entry to the tumor, reducing treatment effectiveness. To address this, we have synthesized Casein nanoparticles (Cn NPs) with attached glutathione (GSH), a natural ligand for cancer cell overexpressed γ-glutamyl transpeptidase (GGT). Cn NPs encapsulated with Camptothecin and NIR dye IR 797 (CCN NPs) for combinatorial therapy of TNBC. The GSH-CCN nanoparticles (CCNG NPs) act as a Nano-Trojan to deceive the cancer cells by delivering therapeutic payloads directly to specific target cells. In this study, Casein Nano-Trojan is equipped with GSH as a targeting ligand for GGT. The binding of CCNG NPs with cell surface receptors switched the anionic charge to catanionic, prompting the target cell to engulf the nanoparticles. The Casein Nano-Trojan releases its therapeutic payload inside the target cell, potentially inhibiting proliferation & inducing a high percentage of cell death (85 ± 7 %). Disintegration of mitochondrial membrane potential, inhibition of both migration & re-growth were observed. Immunofluorescence, acridine orange/ethidium bromide stain, and nuclear fragmentation assay further confirmed the substantial DNA damage induced by the high expression of γH2AX and p53. Significant therapeutic efficacy was observed in the 3D spheroids of 4T1 cells and in vivo breast cancer mice model (BALB/c). These findings demonstrate that CCNG NPs could be an effective treatment approach for highly metastatic triple negative breast cancer.
Collapse
Affiliation(s)
- Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India
| | - Monika Pebam
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India
| | | | - Sunil Venkanna Pogu
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India
| | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India.
| |
Collapse
|
6
|
Sanati M, Amin Yavari S. Liposome-integrated hydrogel hybrids: Promising platforms for cancer therapy and tissue regeneration. J Control Release 2024; 368:703-727. [PMID: 38490373 DOI: 10.1016/j.jconrel.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/10/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Drug delivery platforms have gracefully emerged as an indispensable component of novel cancer chemotherapy, bestowing targeted drug distribution, elevating therapeutic effects, and reducing the burden of unwanted side effects. In this context, hybrid delivery systems artfully harnessing the virtues of liposomes and hydrogels bring remarkable benefits, especially for localized cancer therapy, including intensified stability, excellent amenability to hydrophobic and hydrophilic medications, controlled liberation behavior, and appropriate mucoadhesion to mucopenetration shift. Moreover, three-dimensional biocompatible liposome-integrated hydrogel networks have attracted unprecedented interest in tissue regeneration, given their tunable architecture and physicochemical properties, as well as enhanced mechanical support. This review elucidates and presents cutting-edge developments in recruiting liposome-integrated hydrogel systems for cancer treatment and tissue regeneration.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Centre Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Zeting Y, Shuli M, Yue L, Haowei F, Jing S, Yueping Z, Jie W, Teng C, Wanli D, Zhang K, Peihao Y. Tissue adhesive indocyanine green-locking granular gel-mediated photothermal therapy combined with checkpoint inhibitor for preventing postsurgical recurrence and metastasis of colorectal cancer. Bioeng Transl Med 2023; 8:e10576. [PMID: 38023716 PMCID: PMC10658503 DOI: 10.1002/btm2.10576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 12/01/2023] Open
Abstract
Developing effective therapy to inhibit postoperative recurrence and metastasis of colorectal cancer (CRC) is challenging and significant to reduce mortality and morbidity. Here, a granular hydrogel, assembled from gelatin microgels by dialdehyde starch and interpenetrated with in situ polymerized poly(sulfobetaine methacrylate-co-N-isopropylacrylamide) (P(SBMA-co-NIPAM)), is prepared to load and lock Food and Drug Administration (FDA)-approved indocyanine green (ICG) with definite photothermal function and biosafety for photothermal therapy (PTT) combining with checkpoint inhibitor. The presence of P(SBMA-co-NIPAM) endows granular hydrogel with high retention to water-soluble ICG, preventing easy diffusion and rapid scavenging of ICG. The ICG-locking granular hydrogel can be spread and adhered onto the surgery site at wet state in vivo, exerting a persistent and stable PTT effect. Combined with αPD-L1 treatment, ICG-locking granular hydrogel-mediated PTT can eradicate postsurgery residual and metastatic tumors, and prevent long-term tumor recurrence. Further mechanistic studies indicate that combination treatment effectively promotes dendritic cells maturation in lymph nodes, enhances the number and infiltration of CD8+ T and CD4+ T cells in tumor tissue, and improves memory T cell number in spleen, thus activating the antitumor immune response. Overall, ICG-locking gel-mediated PTT is expected to exhibit broad clinical applications in postoperative treatment of cancers, like CRC.
Collapse
Affiliation(s)
- Yuan Zeting
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Central Laboratory, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Department of Pharmaceutics, School of PharmacyEast China University of Science and TechnologyShanghaiChina
- Shanghai Putuo Central School of Clinical MedicineAnhui Medical UniversityHefeiP. R. China
| | - Ma Shuli
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Central Laboratory, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Department of Pharmaceutics, School of PharmacyEast China University of Science and TechnologyShanghaiChina
| | - Li Yue
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Central Laboratory, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Fang Haowei
- Department of Polymer Materials, School of Materials Science and EngineeringShanghai UniversityShanghaiP. R. China
| | - Shang Jing
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Central Laboratory, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Shanghai Putuo Central School of Clinical MedicineAnhui Medical UniversityHefeiP. R. China
| | - Zhan Yueping
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Central Laboratory, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Wang Jie
- Department of General Surgery, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Chen Teng
- Department of General Surgery, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Deng Wanli
- Department of Oncology, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Kunxi Zhang
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Department of Polymer Materials, School of Materials Science and EngineeringShanghai UniversityShanghaiP. R. China
| | - Yin Peihao
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Department of Pharmaceutics, School of PharmacyEast China University of Science and TechnologyShanghaiChina
- Department of General Surgery, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| |
Collapse
|
8
|
Lu J, Song J, Zhang P, Huang Y, Lu X, Dai H, Xi J. Biomineralized Polydopamine Nanoparticle-Based Sodium Alginate Hydrogels for Delivery of Anti-serine/Threonine Protein Kinase B-Rapidly Accelerated Fibrosarcoma siRNA for Metastatic Melanoma Therapy. ACS NANO 2023; 17:18318-18331. [PMID: 37690074 DOI: 10.1021/acsnano.3c05563] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Malignant melanoma, as a highly aggressive skin cancer, is strongly associated with mutations in serine/threonine protein kinase B-RAF (BRAF, where RAF stands for rapidly accelerated fibrosarcoma). Targeted therapy with anti-BRAF small interfering RNA (siBRAF) represents a crucial aspect of metastatic melanoma treatment. In this study, an injectable hydrogel platform based on sodium alginate (SA), with multifunctions of photothermal and Ca2+-overload cell apoptosis, was explored as a siBRAF carrier for metastatic melanoma therapy. We employed polydopamine nanoparticles (PDAs) as a photothermal core and constructed a calcium phosphate (CaP) shell via biomineralization (PDA@CaP) to load siBRAF (PDA@siBRAF/CaP). The pH-sensitive CaP shell facilitated the release of Ca2+ under the weakly acidic tumor microenvironment, triggering the gelation of PDA@siBRAF/CaP-SA to localized release siBRAF at tumor sites with the interruption of the RAS-RAF-MEK-ERK (MAPK) pathway. Besides, the continuous release of Ca2+ could also lead to Ca2+-overload cell apoptosis. Moreover, the photothermal effect of PDA regulated the release kinetics, resulting in coordinated therapeutic abilities of individual components in the PDA@siBRAF/CaP-SA hydrogels. Consequently, the effective inhibition of tumor growth and metastasis was achieved in vitro and in vivo using a highly metastatic melanoma cell line B16F10 as the model, by combining photothermal ablation, Ca2+ overload, and BRAF silencing. Our work provides a proof-of-concept for an injectable hydrogel system that simultaneously targets multiple mechanisms involved in melanoma progression and has the potential to be translated into clinical use for the metastatic melanoma therapy.
Collapse
Affiliation(s)
- Jianxiu Lu
- School of Medicine, Institute of Translational Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225009, China
| | - Jixin Song
- School of Medicine, Institute of Translational Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, Jiangsu 225009, China
| | - Peiying Zhang
- School of Medicine, Institute of Translational Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ying Huang
- School of Medicine, Institute of Translational Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaomin Lu
- Department of Oncology, Affiliated Haian Hospital of Nantong University, Nantong, Jiangsu 226600, China
| | - Hua Dai
- School of Medicine, Institute of Translational Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, Jiangsu 225009, China
| | - Juqun Xi
- School of Medicine, Institute of Translational Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
9
|
Yu Y, Wang T, Meng X, Jiang T, Zhao X. Chitosan Thermosensitive Hydrogel Based on DNA Damage Repair Inhibition and Mild Photothermal Therapy for Enhanced Antitumor Treatment. Biomacromolecules 2023; 24:3755-3766. [PMID: 37506051 DOI: 10.1021/acs.biomac.3c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The DNA damage repair of tumor cells limits the effect of photothermal therapy (PTT), and high temperatures induced by PTT can damage adjacent normal tissues. To overcome these limitations, we developed a novel composite hydrogel (OLA-Au-Gel) based on chitosan (CS) and β-glycerophosphate (β-GP), which encapsulated olaparib-liposomes (OLA-lips) and CS-capped gold nanoparticles (CS-AuNPs). OLA-Au-Gel achieved the combination of mild PTT (mPTT) by CS-AuNPs and tumor DNA damage repair inhibition by OLA. The hydrogel showed good biocompatibility, injectability, and photothermal response. Under near-infrared laser irradiation, OLA-Au-Gel inhibited the proliferation of tumor cells, induced the generation of reactive oxygen species in vitro, and effectively inhibited the growth of breast tumors in vivo. OLA-Au-Gel shows a promising application prospect for inhibiting tumor development and improving the antitumor effect. Collectively, we propose a novel strategy for enhanced antitumor therapy based on the combination of mPTT and DNA damage repair inhibition.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Teng Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xin Meng
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
10
|
Ali AA, Abuwatfa WH, Al-Sayah MH, Husseini GA. Gold-Nanoparticle Hybrid Nanostructures for Multimodal Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203706. [PMID: 36296896 PMCID: PMC9608376 DOI: 10.3390/nano12203706] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/01/2023]
Abstract
With the urgent need for bio-nanomaterials to improve the currently available cancer treatments, gold nanoparticle (GNP) hybrid nanostructures are rapidly rising as promising multimodal candidates for cancer therapy. Gold nanoparticles (GNPs) have been hybridized with several nanocarriers, including liposomes and polymers, to achieve chemotherapy, photothermal therapy, radiotherapy, and imaging using a single composite. The GNP nanohybrids used for targeted chemotherapy can be designed to respond to external stimuli such as heat or internal stimuli such as intratumoral pH. Despite their promise for multimodal cancer therapy, there are currently no reviews summarizing the current status of GNP nanohybrid use for cancer theragnostics. Therefore, this review fulfills this gap in the literature by providing a critical analysis of the data available on the use of GNP nanohybrids for cancer treatment with a specific focus on synergistic approaches (i.e., triggered drug release, photothermal therapy, and radiotherapy). It also highlights some of the challenges that hinder the clinical translation of GNP hybrid nanostructures from bench to bedside. Future studies that could expedite the clinical progress of GNPs, as well as the future possibility of improving GNP nanohybrids for cancer theragnostics, are also summarized.
Collapse
Affiliation(s)
- Amaal Abdulraqeb Ali
- Biomedical Engineering Graduate Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Mohammad H. Al-Sayah
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
11
|
Du T, Yang T, Xu L, Li X, Yang G, Zhou S. An Implantable Polydopamine Nanoparticle‐in‐Nanofiber Device for Synergistic Cancer Photothermal/Chemotherapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Tianyi Du
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Ting Yang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Ling Xu
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Xilin Li
- School of Life Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Guang Yang
- College of Medicine Southwest Jiaotong University Chengdu 610031 China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| |
Collapse
|
12
|
Chitosan IR806 dye-based polyelectrolyte complex nanoparticles with mitoxantrone combination for effective chemo-photothermal therapy of metastatic triple-negative breast cancer. Int J Biol Macromol 2022; 216:558-570. [PMID: 35809672 DOI: 10.1016/j.ijbiomac.2022.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/21/2022]
Abstract
Chemo-photothermal therapy is one of the emerging therapies for treating triple-negative breast cancer. In this study, we have used ionotropic gelation method to fabricate chitosan and IR806 dye-based polyelectrolyte complex (CIR-PEx) nanoparticles. These nano-complexes were in size range of 125 ± 20 nm. The complexation of IR 806 dye with chitosan improved photostability, photothermal transduction, and showed excellent biocompatibility. Cancer cells treated with CIR-PEx NPs enhanced intracellular uptake within 5 h of incubation and also displayed mitochondrial localization. With the combination of CIR-PEx NPs and a chemotherapeutic agent (i.e., mitoxantrone, MTX), a significant decline in cancer cell viability was observed in both 2D and 3D cell culture models. The chemo-photothermal effect of CIR-PEx NPs + MTX augmented apoptosis in cancer cells when irradiated with NIR light. Furthermore, when tested in the 4 T1-tumor model, the chemo-photothermal therapy showed a drastic decline in tumor volume and inhibited metastatic lung nodules. The localized hyperthermia caused by photothermal therapy reduced the primary tumor burden, and the chemotherapeutic activity of mitoxantrone further complemented by inhibiting the spread of cancer cells. The proposed chemo-photothermal therapy combination could be a promising strategy for treating triple-negative metastatic breast cancer.
Collapse
|
13
|
Appidi T, P S R, Chinchulkar SA, Pradhan A, Begum H, Shetty V, Srivastava R, Ganesan P, Rengan AK. A plasmon-enhanced fluorescent gold coated novel lipo-polymeric hybrid nanosystem: synthesis, characterization and application for imaging and photothermal therapy of breast cancer. NANOSCALE 2022; 14:9112-9123. [PMID: 35722896 DOI: 10.1039/d2nr01378a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study reports a hybrid lipo-polymeric nanosystem (PDPC NPs) synthesized by a modified hydrogel-isolation technique. The ability of the nanosystem to encapsulate hydrophilic and hydrophobic molecules has been demonstrated, and their enhanced cellular uptake has been observed in vitro. The PDPC NPs, surface coated with gold by in situ reduction of chloroauric acid (PDPC-Au NPs), showed a photothermal transduction efficacy of ∼65%. The PDPC-Au NPs demonstrated an increase in intracellular ROS, triggered DNA damage and resulted in apoptotic cell death when tested against breast cancer cells (MCF-7). The disintegration of PDPC-Au NPs into smaller nanoparticles with near-infrared (NIR) laser irradiation was understood using transmission electron microscopy imaging. The lipo-polymeric hybrid nanosystem exhibited plasmon-enhanced fluorescence when loaded with IR780 (a NIR dye), followed by surface coating with gold (PDPC-IR-Au NPs). This paper is one of the first reports on the plasmon-enhanced fluorescence within a nanosystem by simple surface coating of Au, to the best of our knowledge. This plasmon-enhanced fluorescence was unique to the lipo-polymeric hybrid system, as the same was not observed with a liposomal nanosystem. The plasmon-enhanced fluorescence of PDPC-IR-Au NPs, when applied for imaging cancer cells and zebrafish embryos, showed a strong fluorescence signal at minimal concentrations of the dye. The PDPC-IR-Au NPs were also applied for photothermal therapy of breast cancer in vitro and in vivo, and the results depicted significant therapeutic benefits.
Collapse
Affiliation(s)
- Tejaswini Appidi
- Dept. of Biomedical Engineering, Indian Institute of Technology Hyderabad, India.
| | - Rajalakshmi P S
- Dept. of Biomedical Engineering, Indian Institute of Technology Hyderabad, India.
| | | | - Arpan Pradhan
- Dept. of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India
| | - Hajira Begum
- Dept. of Chemistry, Indian Institute of Technology Hyderabad, India
| | - Veeresh Shetty
- Dept. of Chemistry, Indian Institute of Technology Hyderabad, India
| | - Rohit Srivastava
- Dept. of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India
| | | | - Aravind Kumar Rengan
- Dept. of Biomedical Engineering, Indian Institute of Technology Hyderabad, India.
| |
Collapse
|