1
|
Huang W, Chen Z, Cheng P, Shi W. Strong size sieving effect in a rigid oxalate-based metal-organic framework for selective lithium extraction. Chem Commun (Camb) 2024; 60:11972-11975. [PMID: 39344498 DOI: 10.1039/d4cc04101a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
An oxalate-based metal-organic framework Eu-C2O4 was synthesized at gram-scale and studied as a selective adsorbent for Li+ ions, and it exhibited high Li+/Na+ selectivity in aqueous solution. A detailed mechanism study revealed that the key was the well-matched chelating sites of the framework for Li+ ion extraction.
Collapse
Affiliation(s)
- Wenhao Huang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhonghang Chen
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Peng Cheng
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wei Shi
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Han Y, An L, Yang Y, Ma Y, Sun H, Yao J, Zhang T, Wang W. Eliminating the effect of pH: Dual-matrix modulation adsorbent enables efficient lithium extraction from concentrated seawater. WATER RESEARCH 2024; 268:122571. [PMID: 39383802 DOI: 10.1016/j.watres.2024.122571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Lithium ion sieve adsorbents frequently extract liquid lithium resources due to their adsorption effect and cost advantages. However, the adsorption effect is significantly influenced by the ambient pH. The pH effects on the adsorption process can be categorized into two main areas: the competition adsorption of impurity ions and the difference in surface zeta potential. A dual-matrix modulation adsorbent was prepared, comprising a carrier matrix modified with zwitterionic quaternary ammonium bases and an adsorption matrix modified with carboxylation. The zwitterionic quaternary ammonium base groups were employed to mitigate the competitive adsorption of impurity ions by acid-base neutralization. Furthermore, the negative charge of carboxyl groups was employed to diminish the discrepancy in surface zeta potential. The adsorption effect of the ion sieve adsorbent under natural conditions appeared to be significantly enhanced by the dual-matrix modulation, with the saturated adsorption capacity (28 mg/g) and adsorption selectivity (α(Li+/Mg2+)=24.23) being 6.3 and 7.8 times higher than that of the manganese-based adsorbent (HMO) under the same conditions, respectively. Moreover, the adsorption effect was found to be consistent with HMO under alkaline conditions. The results demonstrate that by optimizing the adsorption conditions of the adsorbent, the detrimental impact of pH on the adsorption process of lithium ion sieves can be eliminated.
Collapse
Affiliation(s)
- Yu Han
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Liuqian An
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yan Yang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yuling Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Hongliang Sun
- Yunnan International Joint Laboratory of Bionic Science and Engineering, Kunming, 650223, PR China
| | - Jinxin Yao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Tao Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
3
|
Han Y, Ma J, Liu D, Yang Y, Zhang T, Wang M, Liang D, Wen L, Ma J, Wang W. Microenvironment-Modulating Adsorption Enables Highly Efficient Lithium Extraction under Natural pH Conditions. ACS NANO 2024; 18:9071-9081. [PMID: 38470249 DOI: 10.1021/acsnano.3c12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Ion-sieve adsorbents are effective materials in practical applications for extracting liquid lithium. However, it is greatly suppressed in adsorption capacity and selectivity (Li/Mg) under natural near-neutral conditions of seawater or salt lakes, due to the interference of in situ released H+ and Mg2+ impurity. This paper proposes an adsorbent with a microenvironment-modulating function as a solution. The introduction of quaternary ammonium groups into the carrier accelerates the migration of H+, while preventing the diffusion of Mg2+ by electrostatic repulsion. Besides, it can also prestore OH-, effectively consuming the generated hydrogen ions in situ. Based on the rational design, the alkali consumption of the microenvironment-modulating strategy is dramatically reduced to 1/144 of the traditional alkali-adding method. Additionally, adsorption performance is significantly promoted under natural pH conditions, with a maximum 33 times higher separation factor (selectivity) and 4 times higher adsorption capacity than commercial ion-sieve adsorbents. This development indicates the feasibility of using microenvironment modulation for effective lithium extraction and inspires the development of next-generation high-performance adsorbents.
Collapse
Affiliation(s)
- Yu Han
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Jiaxiang Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Dongqing Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yan Yang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Tao Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Min Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, P. R. China
| | - Daxin Liang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| |
Collapse
|
4
|
Gao X, Ding R, Huang H, Liu B, Zhao X. Constructing a carboxyl-rich angstrom-level trap in a metal-organic framework for the selective capture of lithium. Chem Commun (Camb) 2023; 59:13183-13186. [PMID: 37850377 DOI: 10.1039/d3cc03913g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
A metal-organic-framework-based ion trap was designed via tailoring linker functionality as well as free -COOH density. The mixed-linker UiO-66-H2/H4 exhibits higher adsorption for Li+ ions than H4-free UiO-66-H2 because the H4 linker provides an additional -COOH group in the local region.
Collapse
Affiliation(s)
- Xinxin Gao
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | - Rui Ding
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China.
| | - Baosheng Liu
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | - Xudong Zhao
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| |
Collapse
|
5
|
Qian C, Zheng M, Zhang Y, Xing E, Gui B. Adsorption performance and mechanism of Li + from brines using lithium/aluminum layered double hydroxides-SiO 2 bauxite composite adsorbents. Front Chem 2023; 11:1265290. [PMID: 37954958 PMCID: PMC10634247 DOI: 10.3389/fchem.2023.1265290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
A combined method of solid-phase alkali activation and surface precipitation was used to prepare the lithium/aluminum layered double hydroxides-SiO2 loaded bauxite (LDH-Si-BX) and applied to adsorb Li+ in brines. In the study, various characterization techniques such as SEM, XRD, BET, Zeta potential, and x-ray photoelectron spectroscopy (XPS) were applied to characterize and analyze the adsorbents. The adsorption-desorption performance of LDH-Si-BX for Li+ in brines was systematically investigated, including adsorption temperature, adsorption time, Li+ concentration, and regeneration properties. The results indicated that the adsorption kinetics were better fitted by the pseudo-second-order model, whereas the Langmuir model could match the adsorption isotherm data and the maximum Li+ capacity of 1.70 mg/g at 298K. In addition, in the presence of coexisting ions (Na+, K+, Ca2+, and Mg2+), LDH-Si-BX showed good selective adsorption of Li+, and the pH studies demonstrated that the adsorbents had better Li+ adsorption capacity in neutral environments. In the adsorption process of real brines, LDH-Si-BX had a relatively stable adsorption capacity, and after 10 cycles of adsorption and regeneration, the adsorption capacity decreased by 16.8%. It could be seen that the LDH-Si-BX adsorbents prepared in this report have the potential for Li+ adsorption in brines.
Collapse
Affiliation(s)
- Cheng Qian
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, China
- Key Laboratory of Saline Lake Resources and Environment, Ministry of Land and Resources, Beijing, China
| | - Mianping Zheng
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, China
- Key Laboratory of Saline Lake Resources and Environment, Ministry of Land and Resources, Beijing, China
| | - Yongsheng Zhang
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, China
- Key Laboratory of Saline Lake Resources and Environment, Ministry of Land and Resources, Beijing, China
| | - Enyuan Xing
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, China
- Key Laboratory of Saline Lake Resources and Environment, Ministry of Land and Resources, Beijing, China
| | - Baoling Gui
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, China
- Key Laboratory of Saline Lake Resources and Environment, Ministry of Land and Resources, Beijing, China
| |
Collapse
|
6
|
Gao X, Liu B, Zhao X. Thiol-decorated defective metal-organic framework for effective removal of mercury(II) ion. CHEMOSPHERE 2023; 317:137891. [PMID: 36657579 DOI: 10.1016/j.chemosphere.2023.137891] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/22/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Removal of mercury (Hg) ion from water is important while still faces challenges in capacity and adsorption speed. Herein, using thiol-containing mercaptoacetic acid (MA) as the template, we constructed a novel metal-organic framework (MOF) adsorbent, Zr-MSA-MA (MSA, mercaptosuccinic acid). Unlike other monodentate acids such as acetic acid and formic acid, MA benefits to maintain high-content binding sites, in the meantime of defect formation. On the basis, Zr-MSA-MA exhibits a high adsorption capacity of 714.8 mg g-1 for Hg2+ and fast adsorption kinetics, superior to other MOF-based adsorbents. Co-existing metal ions and pH have only slight interference for the adsorption behavior. Besides, the adsorption is proved to an endothermic reaction and the adsorbent can be regenerated based on a simple elution. Further analysis indicates the strong chemical bonding of Hg2+ and -SH is the main adsorption mechanism. Thus, our work demonstrates the Zr-MSA-MA can serve as a potential adsorbent for Hg2+, and provides a novel strategy to construct defective adsorbent via using active group-containing template.
Collapse
Affiliation(s)
- Xinxin Gao
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Baosheng Liu
- Engineering Research Center for Magnesium Alloy of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024, China; College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China.
| | - Xudong Zhao
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China; Engineering Research Center for Magnesium Alloy of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024, China.
| |
Collapse
|
7
|
One-Step Synthesis of Al-Doped UiO-66 Nanoparticle for Enhanced Removal of Organic Dyes from Wastewater. Molecules 2023; 28:molecules28052182. [PMID: 36903428 PMCID: PMC10004798 DOI: 10.3390/molecules28052182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
In this study, a series of Al-doped metal-organic frameworks (AlxZr(1-x)-UiO-66) were synthesized through a one-step solvothermal method. Various characterization techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and N2 sorption measurement, suggested that the Al doping was uniform and barely influenced the crystallinity, chemical stability, and thermal stability of the materials. Two cationic dyes, safranine T (ST) and methylene blue (MB), were selected for investigating the adsorption performances of Al-doped UiO-66 materials. Al0.3Zr0.7-UiO-66 exhibited 9.63 and 5.54 times higher adsorption capacities than UiO-66, 498 mg/g and 251 mg/g for ST and MB, respectively. The improved adsorption performance can be attributed to π-π interaction, hydrogen bond, and the coordination between the dye and Al-doped MOF. The pseudo-second-order and Langmuir models explained the adsorption process well, which indicated that the dye adsorption on Al0.3Zr0.7-UiO-66 mostly occurred through chemisorption on homogeneous surfaces. A thermodynamic study indicated the adsorption process was spontaneous and endothermic. The adsorption capacity did not decrease significantly after four cycles.
Collapse
|
8
|
Tong B, Guo G, Meng X, Bai P, Lyu J, Guo X. Highly efficient lithium adsorption and stable isotope separation by metal-organic frameworks. Chem Commun (Camb) 2022; 58:8866-8869. [PMID: 35856683 DOI: 10.1039/d2cc02421g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of a series of MOFs on the adsorption and separation of lithium isotopes were investigated in this paper. Seven kinds of MOF were prepared, and the characterization studies of MIL-100(Fe) before and after adsorption by X-ray photoelectron spectroscopy (XPS) demonstrated the potential chemical interaction between Fe and Li. The influence of metal ions, counter-ions and solvents on the adsorption capacity and separation factor was investigated. The maximum separation factor can reach 1.048 ± 0.001. MIL-100(Fe) also has good regeneration performance.
Collapse
Affiliation(s)
- Bo Tong
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| | - Guijie Guo
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| | - Xiangyunxiu Meng
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| | - Peng Bai
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| | - Jiafei Lyu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| | - Xianghai Guo
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Key Laboratory of Ocean Observation Technology of Ministry of Natural Resources, School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|