1
|
Tuo Z, Pan Y, Cai P. Facile and green fabrication of biodegradable aerogel from chitosan derivatives/modified gelatin as absorbent for oil removal. Int J Biol Macromol 2025; 298:139949. [PMID: 39824399 DOI: 10.1016/j.ijbiomac.2025.139949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/27/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Frequent oil spills have caused increasingly severe pollution of marine water bodies. As a result, exploring green and efficient aerogels to tackles oil pollution is in high demand. In this work, a unique strategy for preparing all-biomass aerogel was innovatively proposed. A series of all-biomass CW&BW@DCGA aerogels were successfully prepared by multiple dynamic covalent bonding, in which carboxymethyl chitosan (CMCS) as the substrate material, modified gelatin (Gel-ADH) as a reinforcing agent, and dialdehyde β-cyclodextrin (Da-β-CD) as a non-toxic cross-linking agent. The resulting aerogels were further hydrophobically modified with a green and natural wax blend consisting of carnauba wax (CW) and beeswax (BW). The experimental results demonstrated that incorporating Gel-ADH significantly improved the elastic properties of the materials. Specifically, when m(CMCS):m(Gel-ADH) = 7:3, the aerogel exhibited outstanding resilience, with 60 % compressive strain. In addition, CW&BW@DCGA displayed excellent hydrophobicity, boasting a water contact angle as high as 148.6°, and impressive absorption capacities ranging from 31.7 to 62.5 g/g towards different oils. Its adsorption capacity remained close to 70 % after 10 cycles, indicating favorable reusability. The dynamic absorption processes towards gasoline, diesel, and soybean oil were also well fitted with the pseudo-second-order kinetic model, suggesting that the process is primarily governed by chemisorption.
Collapse
Affiliation(s)
- Zhuangran Tuo
- Guangxi Colleges and Universities Key Laboratory of New Chemical Application Technology in Resources, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yuanfeng Pan
- Guangxi Colleges and Universities Key Laboratory of New Chemical Application Technology in Resources, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Pingxiong Cai
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China.
| |
Collapse
|
2
|
Nie L, Li S, Cao M, Han N, Chen Y. A brief review of preparation and applications of monolithic aerogels in atmospheric environmental purification. J Environ Sci (China) 2025; 149:209-220. [PMID: 39181635 DOI: 10.1016/j.jes.2024.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 08/27/2024]
Abstract
Monolithic aerogels are promising candidates for use in atmospheric environmental purification due to their structural advantages, such as fine building block size together with high specific surface area, abundant pore structure, etc. Additionally, monolithic aerogels possess a unique monolithic macrostructure that sets them apart from aerogel powders and nanoparticles in practical environmental clean-up applications. This review delves into the available synthesis strategies and atmospheric environmental applications of monolithic aerogels, covering types of monolithic aerogels including SiO2, graphene, metal oxides and their combinations, along with their preparation methods. In particular, recent developments for VOC adsorption, CO2 capture, catalytic oxidation of VOCs and catalytic reduction of CO2 are highlighted. Finally, challenges and future opportunities for monolithic aerogels in the atmospheric environmental purification field are proposed. This review provides valuable insights for designing and utilizing monolithic aerogel-based functional materials.
Collapse
Affiliation(s)
- Linfeng Nie
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuangde Li
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mengjie Cao
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Han
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Science & Technology on Particle Materials, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yunfa Chen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Science & Technology on Particle Materials, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
3
|
Feng J, Ma Z, Wu J, Zhou Z, Liu Z, Hou B, Zheng W, Huo S, Pan YT, Hong M, Gao Q, Sun Z, Wang H, Song P. Fire-Safe Aerogels and Foams for Thermal Insulation: From Materials to Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411856. [PMID: 39558768 DOI: 10.1002/adma.202411856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/21/2024] [Indexed: 11/20/2024]
Abstract
The ambition of human beings to create a comfortable environment for work and life in a sustainable way has triggered a great need for advanced thermal insulation materials in past decades. Aerogels and foams present great prospects as thermal insulators owing to their low density, good thermal insulation, mechanical robustness, and even high fire resistance. These merits make them suitable for many real-world applications, such as energy-saving building materials, thermally protective materials in aircrafts and battery, and warming fabrics. Despite great advances, to date there remains a lack of a comprehensive yet critical review on the thermal insulation materials. Herein, recent progresses in fire-safe thermal-insulating aerogels and foams are summarized, and pros/cons of three major categories of aerogels/foams (inorganic, organic and their hybrids) are discussed. Finally, key challenges associated with existing aerogels are discussed and some future opportunities are proposed. This review is expected to expedite the development of advanced aerogels and foams as fire-safe thermally insulating materials, and to help create a sustainable, safe, and energy-efficient society.
Collapse
Affiliation(s)
- Jiabing Feng
- College of Biological, Chemical Sciences and Engineering, China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing, Zhejiang, 314001, China
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Zhewen Ma
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jianpeng Wu
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Zhezhe Zhou
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Zheng Liu
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
- State Key Laboratory of Efficient Production of Forest Resources & Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing, 100083, China
| | - Boyou Hou
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Wei Zheng
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Siqi Huo
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Ye-Tang Pan
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Min Hong
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Qiang Gao
- State Key Laboratory of Efficient Production of Forest Resources & Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing, 100083, China
| | - Ziqi Sun
- School of Mechanical, Medical and Process Engineering and School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| |
Collapse
|
4
|
Jiang W, Hou X, Guo X, Zhu M, Lin X, Zhang Z, Chen Z, Lin X, Feng Y, Zhao J, Yang J, Wu M. A superelastic, biofluid-locking, and degradable dressing for wound healing. Carbohydr Polym 2025; 347:122774. [PMID: 39486999 DOI: 10.1016/j.carbpol.2024.122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 11/04/2024]
Abstract
In medical field, light-weight, superelastic, and super-absorbing aerogels are highly desired for sensitive wounds with persistent exudations. Up to now, superelastic PU porous dressings are commonly employed, which impose environmental concerns both in their preparation and in their pollution after usage. Herein, carboxymethyl cellulose (CMC) was used to construct hierarchical aerogels via a dual-crosslinking and porogen leaching method. The hierarchical aerogel not only disperses stress at multiple scales, endowing the aerogel with superelasticity, but also deeply absorbs bioliquid through its hierarchical porous surfaces and strong wetting forces deriving from the abundant hydrophilic groups such as hydroxyl and carboxyl groups. Moreover, for practical use, the hierarchical CMC (H-CMC) dressing demonstrates superior absorbency than commercial elastic PU foam both in static and dynamic liquid absorption, faster wound healing than commercial CMC fiber dressing, and can fully degrade both in vivo and in soil. Thus, this research offers a universal approach to design hierarchical wound dressings using bio-based polyelectrolyte, presenting a wound dressing that is both environmentally-friendly and highly comfortable when applied in healing human sensitive injuries.
Collapse
Affiliation(s)
- Weijie Jiang
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, 17 Beierhuan East Road, Shijiazhuang 050043, China
| | - Xuelong Hou
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, 17 Beierhuan East Road, Shijiazhuang 050043, China
| | - Xiangyang Guo
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, 17 Beierhuan East Road, Shijiazhuang 050043, China
| | - Meng Zhu
- Beierhuan east road No. 17, Shijiazhuang, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing 100190, China
| | - Xinsen Lin
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhaowen Zhang
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, 17 Beierhuan East Road, Shijiazhuang 050043, China
| | - Zixiang Chen
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, 17 Beierhuan East Road, Shijiazhuang 050043, China
| | - Xiaobo Lin
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, 17 Beierhuan East Road, Shijiazhuang 050043, China.
| | - Yafei Feng
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Junchai Zhao
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, 17 Beierhuan East Road, Shijiazhuang 050043, China
| | - Jinhui Yang
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, 17 Beierhuan East Road, Shijiazhuang 050043, China
| | - Min Wu
- Beierhuan east road No. 17, Shijiazhuang, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing 100190, China.
| |
Collapse
|
5
|
Liu S, He M, Qin Q, Liu W, Liao L, Qin S. Expanded Properties and Applications of Porous Flame-Retardant Polymers Containing Graphene and Its Derivatives. Polymers (Basel) 2024; 16:2053. [PMID: 39065369 PMCID: PMC11280740 DOI: 10.3390/polym16142053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
With the integration and miniaturization of modern equipment and devices, porous polymers, containing graphene and its derivatives, with flame-retardancy have become a research hotspot. In this paper, the expanded properties and high-end applications of flame-retardant porous materials containing graphene and its derivatives were discussed. The research progress regarding graphene-based porous materials with multiple energy conversion, thermal insulation, an electromagnetic shielding property, and a high adsorption capacity were elucidated in detail. The potential applications of materials with the above-mentioned properties in firefighter clothing, fire alarm sensors, flexible electronic skin, solar energy storage, energy-saving buildings, stealth materials, and separation were summarized. The construction strategies, preparation methods, comprehensive properties, and functionalization mechanisms of these materials were analyzed. The main challenges and prospects of flame-retardant porous materials containing graphene and its derivatives with expanded properties were also proposed.
Collapse
Affiliation(s)
- Shan Liu
- College of Materials and Energy Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Min He
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Qingdong Qin
- College of Materials and Energy Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Wei Liu
- College of Materials and Energy Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Longfeng Liao
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Shuhao Qin
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Li SL, Wang YT, Zhang SJ, Sun MZ, Li J, Chu LQ, Hu CX, Huang YL, Gao DL, Schiraldi DA. A Novel, Controllable, and Efficient Method for Building Highly Hydrophobic Aerogels. Gels 2024; 10:121. [PMID: 38391450 PMCID: PMC10888267 DOI: 10.3390/gels10020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Aerogels prepared using freeze-drying methods have the potential to be insulation materials or absorbents in the fields of industry, architecture, agriculture, etc., for their low heat conductivity, high specific area, low density, degradability, and low cost. However, their native, poor water resistance caused by the hydrophilicity of their polymer matrix limits their practical application. In this work, a novel, controllable, and efficient templating method was utilized to construct a highly hydrophobic surface for freeze-drying aerogels. The influence of templates on the macroscopic morphology and hydrophobic properties of materials was investigated in detail. This method provided the economical and rapid preparation of a water-resistant aerogel made from polyvinyl alcohol (PVA) and montmorillonite (MMT), putting forward a new direction for the research and development of new, environmentally friendly materials.
Collapse
Affiliation(s)
- Shu-Liang Li
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Yu-Tao Wang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Shi-Jun Zhang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Ming-Ze Sun
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7202, USA
| | - Jie Li
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Li-Qiu Chu
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Chen-Xi Hu
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Yi-Lun Huang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Da-Li Gao
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - David A Schiraldi
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7202, USA
| |
Collapse
|
7
|
Zhao Y, Zeng Q, Lai X, Li H, Zhao Y, Li K, Jiang C, Zeng X. Multifunctional cellulose-based aerogel for intelligent fire fighting. Carbohydr Polym 2023; 316:121060. [PMID: 37321743 DOI: 10.1016/j.carbpol.2023.121060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Multifunctional biomass-based aerogels with mechanically robust and high fire safety are urgently needed for the development of environmentally-friendly intelligent fire fighting but challenging. Herein, a novel polymethylsilsesquioxane (PMSQ)/cellulose/MXene composite aerogel (PCM) with superior comprehensive performance was fabricated by ice-induced assembly and in-situ mineralization. It exhibited light weight (16.2 mg·cm-3), excellent mechanical resilience, and rapidly recovered after being subjected to the pressure of 9000 times of its own weight. Moreover, PCM demonstrated outstanding thermal insulation, hydrophobicity and sensitive piezoresistive sensing. In addition, benefiting from the synergism of PMSQ and MXene, PCM displayed good flame retardancy and improved thermostability. The limiting oxygen index of PCM was higher than 45.0 %, and it quickly self-extinguished after being removed away from fire. More importantly, the rapid electrical resistance reduction of MXene at high temperature endowed PCM with sensitive fire-warning capability (trigger time was less than 1.8 s), which provided valuable time for people to evacuate and relief. This work provides new insights for the preparation and application of the next-generation high performance biomass-based aerogels.
Collapse
Affiliation(s)
- Yinan Zhao
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Qingtao Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xuejun Lai
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China.
| | - Hongqiang Li
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Ying Zhao
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Kunquan Li
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Changcheng Jiang
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xingrong Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China.
| |
Collapse
|
8
|
Tuo Z, Cai P, Xiao H, Pan Y. Ultralight and highly efficient oil-water selective aerogel from carboxymethyl chitosan and oxidized β-cyclodextrin for marine oil spill cleanup. Int J Biol Macromol 2023:125247. [PMID: 37295697 DOI: 10.1016/j.ijbiomac.2023.125247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Biomass-based aerogels for oil spill cleanup have attracted tremendous research interests due to their feasibility in oil-water separation. However, the cumbersome preparation process and toxic cross-linking agents hinder their application. In this work, a facile and novel method to prepare hydrophobic aerogels is reported for the first time. Da-β-CD/CMCS aerogel (DCA), Da-β-CD/CMCS/PVA aerogel (DCPA), and hydrophobic Da-β-CD/CMCS/PVA aerogel (HDCPA) were successfully synthesized via the Schiff base reaction between carboxymethyl chitosan (CMCS) and dialdehyde β-cyclodextrin (Da-β-CD). Meanwhile, polyvinyl alcohol (PVA) acted as reinforcement and hydrophobic modification was conducted via chemical vapor deposition (CVD). The structure, mechanical properties, hydrophobic behaviors and absorption performance of aerogels were comprehensively characterized. The results indicated that the DCPA containing 7 % PVA exhibited excellent compressibility and elasticity even at a compressive strain of ε = 60 %, however, the DCA without PVA showed incompressibility, suggesting that the important role played by PVA in improving compressibility. Moreover, HDCPA possessed excellent hydrophobicity (water contact angle up to 148.4°), which could be well maintained after experiencing wear and corrosion in harsh environments. HDCPA also possesses high absorption capacities (24.4-56.5 g/g) towards different oils with satisfied recyclability. These advantages endow HDCPA with great potential and application prospects in offshore oil spill cleanup.
Collapse
Affiliation(s)
- Zhuangran Tuo
- Guangxi Colleges and Universities Key Laboratory of New Chemical Application Technology in Resources, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Pingxiong Cai
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Yuanfeng Pan
- Guangxi Colleges and Universities Key Laboratory of New Chemical Application Technology in Resources, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
9
|
Wang L, Lin X, Li J, Yang H, Feng X, Wan C. Konjac Glucomannan Aerogels Modified by Hydrophilic Isocyanate and Expandable Graphite with Excellent Hydrolysis Resistance, Mechanical Strength, and Flame Retardancy. Biomacromolecules 2023. [PMID: 37141322 DOI: 10.1021/acs.biomac.3c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
At present, biomass foamlike materials are a hot research topic, but they need to be improved urgently due to their defects such as large size shrinkage rate, poor mechanical strength, and easy hydrolysis. In this study, the novel konjac glucomannan (KGM) composite aerogels modified with hydrophilic isocyanate and expandable graphite were prepared by a facile vacuum freeze-drying method. Compared with the unmodified KGM aerogel, the volume shrinkage of the KGM composite aerogel (KPU-EG) decreased from 36.36 ± 2.47% to 8.64 ± 1.46%. Additionally, the compressive strength increased by 450%, and the secondary repeated compressive strength increased by 1476%. After soaking in water for 28 days, mass retention after hydrolysis of the KPU-EG aerogel increased from 51.26 ± 2.33% to more than 85%. The UL-94 vertical combustion test showed that the KPU-EG aerogel can achieve a V-0 rating, and the limiting oxygen index (LOI) value of the modified aerogel can reach up to 67.3 ± 1.5%. To sum up, the cross-linking modification of hydrophilic isocyanate can significantly improve the mechanical properties, flame retardancy, and hydrolysis resistance of KGM aerogels. We believe that this work can provide excellent hydrolytic resistance and mechanical properties and has broad application prospects in practical packaging, heat insulation, sewage treatment, and other aspects.
Collapse
Affiliation(s)
- Linsheng Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Xiang Lin
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jiajia Li
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Hongyu Yang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaming Feng
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Chaojun Wan
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
10
|
Hu X, Yang B, Hao M, Chen Z, Liu Y, Ramakrishna S, Wang X, Yao J. Preparation of high elastic bacterial cellulose aerogel through thermochemical vapor deposition catalyzed by solid acid for oil-water separation. Carbohydr Polym 2023; 305:120538. [PMID: 36737190 DOI: 10.1016/j.carbpol.2023.120538] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Oil pollution has caused more and more serious damages to the environment, especially to water. Oil and water separation technologies based on high-performance absorbing materials have attracted extensive attentions. Herein, elasticity-enhanced bacterial cellulose (BC) aerogel is synthesized for oil/water separation through thermochemical vapor deposition (CVD) catalyzed by 1, 2, 3, 4-butanetetracarboxylic acid (BTCA). BTCA has two functions, namely, esterification with BC and catalyzing CVD. The prepared aerogel could be recovered soon after being compressed and the elastic recovery was >90 % at set maximum deformation of 80 %. And, it also exhibits vigorous fatigue resistance with an elastic deformation of >80 % after 50 cycles. The high elastic and hydrophobic aerogel is very suitable for absorbing and desorbing oils by simple mechanical squeezing. The adsorption capacity for n-hexane and dichloroethane maintain 87 % and 81 % after 50 cycles, respectively, which implies robust reusability. Importantly, the CVD could also be catalyzed by other solid acids such as citric acid and vitamin C. This design and fabrication method offers a novel avenue for the preparation of hydrophobic bacterial cellulose aerogel with high elasticity.
Collapse
Affiliation(s)
- Xiaodong Hu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Bo Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Ming Hao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zhijun Chen
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yanbo Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 639798, Singapore
| | - Xiaoxiao Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Jinbo Yao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
11
|
Qin B, Yu ZL, Huang J, Meng YF, Chen R, Chen Z, Yu SH. A Petrochemical-Free Route to Superelastic Hierarchical Cellulose Aerogel. Angew Chem Int Ed Engl 2023; 62:e202214809. [PMID: 36445797 DOI: 10.1002/anie.202214809] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Cellulose aerogels are plagued by intermolecular hydrogen bond-induced structural plasticity, otherwise rely on chemicals modification to extend service life. Here, we demonstrate a petrochemical-free strategy to fabricate superelastic cellulose aerogels by designing hierarchical structures at multi scales. Oriented channels consolidate the whole architecture. Porous walls of dehydrated cellulose derived from thermal etching not only exhibit decreased rigidity and stickiness, but also guide the microscopic deformation and mitigate localized large strain, preventing structural collapse. The aerogels show exceptional stability, including temperature-invariant elasticity, fatigue resistance (∼5 % plastic deformation after 105 cycles), high angular recovery speed (1475.4° s-1 ), outperforming most cellulose-based aerogels. This benign strategy retains the biosafety of biomass and provides an alternative filter material for health-related applications, such as face masks and air purification.
Collapse
Affiliation(s)
- Bing Qin
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, China
| | - Zhi-Long Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, China
| | - Jin Huang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, China
| | - Yu-Feng Meng
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, China
| | - Rui Chen
- Department of Modern Mechanics, University of Science and Technology of China, 230026, Hefei, China
| | - Zhi Chen
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, China
| |
Collapse
|
12
|
Zhang S, Wang Z, Hu Y, Ji H, Xiao Y, Wang J, Xu G, Ding F. Ambient Pressure Drying to Construct Cellulose Acetate/Benzoxazine Hybrid Aerogels with Flame Retardancy, Excellent Thermal Stability, and Superior Mechanical Strength Resistance to Cryogenic Temperature. Biomacromolecules 2022; 23:5056-5064. [PMID: 36331293 DOI: 10.1021/acs.biomac.2c00904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cellulose aerogels are highly attractive candidates in various applications, such as thermal insulation, adsorption separation, biomedical field, and as carriers, due to their intrinsic merits of low density, high porosity, biodegradability, and renewability. However, the expensive cost of the supercritical drying process and poor mechanical properties limit their practical applications. Herein, a new method was presented to fabricate cellulose acetate/benzoxazine hybrid aerogels (CBAs) with low cost, low drying shrinkage, excellent mechanical properties under cryogenic condition (-196 °C), outstanding thermal insulation, flame retardancy, and good thermal stability by ambient pressure drying. In more detail, the weighted drying shrinkage rate of CBAs-T2 can be controlled to 6.8% (the average value along the radial and axial directions), mainly due to the enhanced skeleton, by introducing polybenzoxazine networking chains. The resultant CBAs-T2 exhibit outstanding mechanical properties at room temperature because of the presence of the polybenzoxazine hybrid in the cellulose networking system. CBAs-T2 still have good mechanical properties even after subjecting them to liquid nitrogen treatment. In addition, the optimal value of thermal conductivity (0.033 W m-1 K-1) is gained easily because of the uniform cross-linking networking structure and small pore size. A superior flame retardance of CBAs-T2 is endowed to achieve self-extinguishment after ignition, which is attributed to the presence of the aromatic ring in the backbone structure. Moreover, the good thermal stability of CBAs-T2 is attributed to the fact that polybenzoxazine components could resist the decomposition of cellulose acetate and inhibit heat release during the combustion process. Our study would provide a novel method for obtaining biomass aerogels including the cellulose-based materials system with low drying shrinkage and superior mechanical properties despite bearing a cryogenic environment by the low-cost ambient pressure drying approach.
Collapse
Affiliation(s)
- Sizhao Zhang
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, Jiangxi, China.,Postdoctoral Research Station on Mechanics, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, Hunan, China
| | - Zhao Wang
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, Jiangxi, China
| | - Yangbiao Hu
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, Jiangxi, China
| | - Hui Ji
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, Jiangxi, China
| | - Yunyun Xiao
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, Jiangxi, China
| | - Jing Wang
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, Jiangxi, China
| | - Guangyu Xu
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, Jiangxi, China
| | - Feng Ding
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, Jiangxi, China
| |
Collapse
|
13
|
Zhong Y, Li H, Liu H, Wang J, Han X, Lu L, Xia S. Elytra-mimetic ceramic fiber aerogel with excellent mechanical, anti-oxidation, and thermal insulation properties. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.11.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Li SL, He JH, Li Z, Lu JH, Liu BW, Fu T, Zhao HB, Wang YZ. A sponge heated by electromagnetic induction and solar energy for quick, efficient, and safe cleanup of high-viscosity crude oil spills. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129272. [PMID: 35739787 DOI: 10.1016/j.jhazmat.2022.129272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Frequent oil spills have caused severe environmental and ecological damage. Effective cleanup has become a complex challenge owing to the poor flowability of viscous crude oils. The current method of solar heating to reduce the viscosity of heavy oil is only suitable during sunny days, while the use of Joule heating is limited by the risk of direct exposure to high-voltage electricity. Herein, we demonstrate a noncontact electromagnetic induction and solar dual-heating sponge for the quick, safe, and energy-saving cleanup of ultrahigh-viscosity heavy oil. The resulting sponge with magnetic, conductive, and hydrophobic properties can be rapidly heated to absorb heavy oil under alternating magnetic fields, solar irradiation, or both of these conditions. By constructing theoretical models and fitting the actual data, an in-depth analysis of induction and solar heating processes is carried out. The sponge has excellent resilience and stability, indicating its reusability, fast and continuous adsorption (16.17 g in 10 s), and large capacity (75-81 g/g, the highest value ever) for soft asphalt (a highly viscous crude oil). This work provides a new noncontact dual-heating strategy for heavy oil cleanup, in which absorbents use induction heating during an emergency and then switch to partial or full solar heating to save energy in sunny conditions. ENVIRONMENTAL IMPLICATION: Heavy oils stranded on the beach or floating on water can kill underwater plants by blocking sunlight, or trap water birds and other animals. Heavy oil also contains aromatic substances that are toxic to aquatic organisms. Although oil spills near shallow water cannot be cleaned up by fences or other machinery, an oil adsorbent can deal with this problem. However, common adsorbents cannot effectively absorb high-viscosity oils, such as heavy oil. In this paper, an induction and solar dual-heating sponge is developed for the effective cleanup of high-viscosity oil.
Collapse
Affiliation(s)
- Shu-Liang Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jie-Hao He
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhen Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jia-Hui Lu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo-Wen Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Teng Fu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hai-Bo Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
15
|
Controllable construction of multifunctional superhydrophobic coating with ultra-stable efficiency for oily water treatment. J Colloid Interface Sci 2022; 628:356-365. [DOI: 10.1016/j.jcis.2022.07.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/20/2022]
|
16
|
Yuan Y, Solin N. Protein-Based Flexible Conductive Aerogels for Piezoresistive Pressure Sensors. ACS APPLIED BIO MATERIALS 2022; 5:3360-3370. [PMID: 35694974 PMCID: PMC9297298 DOI: 10.1021/acsabm.2c00348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Gelatin is an excellent
gelling agent and is widely employed for
hydrogel formation. Because of the poor mechanical properties of gelatin
when dry, gelatin-aerogels are comparatively rare. Herein we demonstrate
that protein nanofibrils can be employed to improve the mechanical
properties of gelatin aerogels, and the materials can moreover be
functionalized with a an electrically conductive polyelectrolyte resulting
in formation of an elastic electrically conductive aerogel that can
be employed as a piezoresistive pressure sensor. The aerogel sensor
shows a good linear relationship in a wide pressure range (1.8–300
kPa) with a sensitivity of 1.8 kPa–1. This work
presents a convenient way to produce electrically conductive elastic
aerogels from low-cost protein precursors.
Collapse
Affiliation(s)
- Yusheng Yuan
- Department of Physics, Chemistry, and Biology, Biomolecular and Organic Electronics, Linköping University, 581 83 Linköping, Sweden
| | - Niclas Solin
- Department of Physics, Chemistry, and Biology, Biomolecular and Organic Electronics, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
17
|
Zheng R, Cheng Y, Jiang X, Lin T, Chen W, Deng G, Miras HN, Song YF. Fiber Templated Epitaxially Grown Composite Membranes: From Thermal Insulation to Infrared Stealth. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27214-27221. [PMID: 35653141 DOI: 10.1021/acsami.2c05906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Thermal insulation materials show a substantial impact on civil and military fields for applications. Fabrication of efficient, flexible, and comfortable composite materials for thermal insulation is thereby of significance. Herein, a "fiber templated epitaxial growth" strategy was adopted to construct PAN@LDH (PAN = polyacrylonitrile; LDH = layered double hydroxides) composite membranes with a three-dimensional (3D) network structure. The PAN@LDH showed an impressive temperature difference of 28.1 °C as a thermal insulation material in the hot stage of 80 °C with a thin layer of 0.6 mm. Moreover, when a human hand was covered with 3 layers of the PAN@LDH-70% composite membrane, it was rendered invisible under infrared radiation. Such excellent performance can be attributed to the following reasons: (1) the hierarchical interfaces of the PAN@LDH composite membrane reduced thermal conduction, (2) the 3D network structure of the PAN@LDH composite membranes restricted thermal convection, and (3) the selective infrared absorption of LDHs decreased thermal radiation. When modified with Dodecyltrimethoxysilane (DTMS), the resulting PAN@LDH@DTMS membrane can be used under high humidity conditions with excellent thermal insulation properties. As such, this work provides a facile strategy for the development of high-performance thermal insulation functional membranes.
Collapse
Affiliation(s)
- Ruoxuan Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yao Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Xiao Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tong Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Gaofeng Deng
- State Key Laboratory of Building Safety and Environment, China Academy of Building Research, Beijing 100013, P. R. China
| | - Haralampos N Miras
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|