1
|
Qiao S, Liao R, Xie M, Song X, Zhang A, Fang Y, Zhang C, Yu H. Synthesis and Optoelectronic Properties of Perylene Diimide-Based Liquid Crystals. Molecules 2025; 30:799. [PMID: 40005111 PMCID: PMC11858137 DOI: 10.3390/molecules30040799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/01/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Perylene diimide (PDI), initially synthesized and explored as an organic dye, has since gained significant recognition for its outstanding optical and electronic properties. Early research primarily focused on its vibrant coloration; however, the resolution of solubility challenges has revealed its broader potential. PDIs exhibit exceptional optical characteristics, including strong absorption and high fluorescence quantum yield, along with remarkable electronic properties, such as high electron affinity and superior charge carrier mobility. Furthermore, the robust π-π stacking interactions and liquid crystalline behavior of PDIs facilitate precise their self-assembly into highly ordered structures, positioning them as valuable materials for advanced applications in optoelectronics, photonics, and nanotechnology. This article provides a comprehensive review of the progress made in the design, synthesis, and optoelectronic performance of PDI-based liquid crystals. It explores how various substituents and their placement on the PDI core impact the properties of these liquid crystal molecules and discusses the challenges and opportunities that shape this rapidly evolving class of optical materials. This review is strictly focused on PDIs and does not cover their elongated or laterally extended derivatives, nor does it include monoimide or ester compounds.
Collapse
Affiliation(s)
- Shiyi Qiao
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Ruijuan Liao
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Mingsi Xie
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Xiaoli Song
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Ao Zhang
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yi Fang
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Chunxiu Zhang
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Haifeng Yu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Li B, Zhang J, Wang J, Chen X. Aggregation-Induced Emission-Active Cyanostilbene-Based Liquid Crystals: Self-Assembly, Photophysical Property, and Multiresponsive Behavior. Molecules 2024; 29:5811. [PMID: 39683967 DOI: 10.3390/molecules29235811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Cyanostilbene (CS)-related conjugated groups can be considered as dual functional groups of AIEgen and mesogen to construct photoluminescent liquid crystals, and it is essential to study the relationship between their molecular structures and compound properties systematically. In this paper, we designed and synthesized linear and bent-shaped CS derivatives containing ester- and amide-connecting groups and different substituted numbers of alkoxy tails. Their phase behaviors and photophysical properties were investigated in depth. The bent-shaped compounds with the mono-substituted alkoxy tail exhibit a smectic C structure, and those containing two or three alkoxy tails possess a hexagonal columnar phase structure. The compounds exhibit aggregation-induced emission (AIE) properties in tetrahydrofuran (THF)/water mixtures. When the water fraction increases to a certain threshold, a dramatic increase in emission intensity and a red-shift in the fluorescence emission peak are detected. The emission peaks of the ester-type compounds in solid states are around 480 nm, and those of the amide-type compounds are extended to 590 nm, exhibiting versatile luminescent colors. Moreover, thermochromic and photochromic fluorescence-responsive properties are witnessed in these CS derivatives. This work provides a new strategy for the design and synthesis of fluorescent liquid crystalline materials with multiple response properties.
Collapse
Affiliation(s)
- Bian Li
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Junde Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Juan Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaofang Chen
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Zhang J, Liu J, Niu C, Wu Q, Tan J, Jing N, Wen Y. Functionalized Fluorescent Organic Nanoparticles Based AIE Enabling Effectively Targeting Cancer Cell Imaging. Chembiochem 2023; 24:e202300391. [PMID: 37718314 DOI: 10.1002/cbic.202300391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/21/2023] [Accepted: 09/17/2023] [Indexed: 09/19/2023]
Abstract
We report a fluorescent dye TM by incorporating the tetraphenylethylene (TPE) and cholesterol components into perylene bisimides (PBI) derivative. Fluorescence emission spectrum shows that the dye has stable red emission and aggregation-induced emission (AIE) characteristics. The incorporation of cholesterol components triggers TM to show induced chirality through supramolecular self-assembly. The cRGD-functionalized nanoparticles were prepared by encapsulating fluorescent dyes with amphiphilic polymer matrix. The functionalized fluorescent organic nanoparticles exhibit excellent biocompatibility, large Stokes' shift and good photostability, which make them effective fluorescent probes for targeting cancer cells with high fluorescence contrast.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Applied Chemistry, Shanxi University, 030006, Taiyuan, China
| | - Jiaqi Liu
- College of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China
| | - Chengyan Niu
- College of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China
| | - Qiulan Wu
- College of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China
| | - Jingjing Tan
- Research Center for Fine Chemicals Engineering, Shanxi University, 030006, Taiyuan, China
| | - Ning Jing
- Institute of Molecular Science, Shanxi University, 030006, Taiyuan, China
| | - Ying Wen
- Institute of Molecular Science, Shanxi University, 030006, Taiyuan, China
| |
Collapse
|
4
|
Mu B, Wang L, Yang Z, Luo X, Tian W. Topological transformation across different dimensions of supramolecular polymer via photo-isomerization. Chem Commun (Camb) 2023; 59:12645-12648. [PMID: 37791951 DOI: 10.1039/d3cc03911k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Herein, we report a novel topological transformable supramolecular polymer capable of converting its architecture from a two-dimensional to a one-dimensional structure. The transformative process is achieved by the precise control of the steric configuration of constituent monomers via photo-isomerization.
Collapse
Affiliation(s)
- Bin Mu
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Liang Wang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhongke Yang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Xiao Luo
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Wei Tian
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
5
|
Mu B, Ma T, Zhang Z, Hao X, Wang L, Wang J, Yan H, Tian W. Thermo-Induced Bathochromic Emission in Columnar Discotic Liquid Crystals Realized by Intramolecular Planarization. Chemistry 2023; 29:e202300320. [PMID: 36794471 DOI: 10.1002/chem.202300320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Most organic thermochromic fluorescent materials exhibit thermo-induced hypsochromic emission due to the formation of excimers in ordered molecular solids; however, it is still a challenge to endow them with bathochromic emission despite its significance in making up the field of thermochromism. Here, a thermo-induced bathochromic emission in columnar discotic liquid crystals is reported realized by intramolecular planarization of the mesogenic fluorophores. A three-armed discotic molecule of dialkylamino-tricyanotristyrylbenzene was synthesized, which preferred to twist out of the core plane to accommodate ordered molecular stacking in hexagonal columnar mesophases, giving rise to bright green monomer emission. However, intramolecular planarization of the mesogenic fluorophores occurred in isotropic liquid increasing the conjugation length, and as a result led to thermo-induced bathochromic emission from green to yellow light. This work reports a new concept in the thermochromic field and provides a novel strategy to achieve fluorescence tuning from intramolecular actions.
Collapse
Affiliation(s)
- Bin Mu
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Tianshu Ma
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zhelin Zhang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiangnan Hao
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Liang Wang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jingxia Wang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongxia Yan
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Tian
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
6
|
Gao A, Wang Q, Wu H, Zhao JW, Cao X. Research progress on AIE cyanostilbene-based self-assembly gels: Design, regulation and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Ahumada G, Borkowska M. Fluorescent Polymers Conspectus. Polymers (Basel) 2022; 14:1118. [PMID: 35335449 PMCID: PMC8955759 DOI: 10.3390/polym14061118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The development of luminescent materials is critical to humankind. The Nobel Prizes awarded in 2008 and 2010 for research on the development of green fluorescent proteins and super-resolved fluorescence imaging are proof of this (2014). Fluorescent probes, smart polymer machines, fluorescent chemosensors, fluorescence molecular thermometers, fluorescent imaging, drug delivery carriers, and other applications make fluorescent polymers (FPs) exciting materials. Two major branches can be distinguished in the field: (1) macromolecules with fluorophores in their structure and (2) aggregation-induced emission (AIE) FPs. In the first, the polymer (which may be conjugated) contains a fluorophore, conferring photoluminescent properties to the final material, offering tunable structures, robust mechanical properties, and low detection limits in sensing applications when compared to small-molecule or inorganic luminescent materials. In the latter, AIE FPs use a novel mode of fluorescence dependent on the aggregation state. AIE FP intra- and intermolecular interactions confer synergistic effects, improving their properties and performance over small molecules aggregation-induced, emission-based fluorescent materials (AIEgens). Despite their outstanding advantages (over classic polymers) of high emission efficiency, signal amplification, good processability, and multiple functionalization, AIE polymers have received less attention. This review examines some of the most significant advances in the broad field of FPs over the last six years, concluding with a general outlook and discussion of future challenges to promote advancements in these promising materials that can serve as a springboard for future innovation in the field.
Collapse
Affiliation(s)
- Guillermo Ahumada
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea;
| | | |
Collapse
|