1
|
Yu JM, Zhai L, Zheng B, Li H, Hou C, Han Y, Ma J, Wang Z, Xiong WW. Construction of hierarchical nanostructured surface on an organic hybrid selenidostannate with light trapping effect to achieve sunlight-driven environmental remediation. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137881. [PMID: 40073574 DOI: 10.1016/j.jhazmat.2025.137881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Due to the low intensity of sunlight, it is a great challenge to realize highly efficient sunlight-driven photocatalysis. To maximize the utilization of sunlight, increasing the light capturing ability of photocatalysts is a prerequisite to attain high catalytic performances. Due to the multiple reflections of light in the hierarchical nanostructures, constructing hierarchical nanostructured surface should boost the sunlight capturing ability of a photocatalyst. Herein we used a surface oxidation etching method to construct a hierarchical nanostructure on the surface of an organic hybrid selenidostannate [Bmim]4[Sn9Se20], namely BTSe. After 24 hours of etching by ammonium persulfate, the surface of BTSe-O24 turned into a hierarchical nanostructure. FDTD simulation proved that the hierarchical nanostructure can effectively decline the loss of incident light and enhance light capturing ability of BTSe-O24. As a result, BTSe-O24 can completely reduce Cr(VI) (100 mg/L) in 8 min with a conversion rate of 750 mg/(g h) under sunlight. The catalytic performance of BTSe-O24 under sunlight is even better than those of most reported photocatalysts under high-power xenon lamps. More importantly, BTSe-O24 can maintain high photocatalytic efficiency in the whole daytime (from 8:00 to 16:00 in autumn and winter). Our research opens a new perspective on the design of sunlight-driven photocatalysts.
Collapse
Affiliation(s)
- Ji-Ming Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Longfei Zhai
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Bing Zheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Haohao Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Chunhui Hou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Yimin Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Juan Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Zihui Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Wei-Wei Xiong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China.
| |
Collapse
|
2
|
Hao Y, Hou C, Chen C, Zhou H, Liu Y, Lin Y, Li H, Hu K. Advances in the Efficient Removal of the Key Radioactive Nuclide 90Sr Using Crystalline Ion-Exchange Materials: A Review. Chem Asian J 2025; 20:e202401320. [PMID: 39945673 DOI: 10.1002/asia.202401320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/19/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
Nuclear energy, a rapidly advancing clean energy source, generates significant amounts of radioactive waste, including radioactive nuclides such as cesium (Cs+), strontium (Sr2+), and uranyl (UO2 2+). Among these, Sr2+ is particularly concerning due to its long half-life, high mobility in aqueous environments, and its toxic effects on both human health and ecosystems. Its radioactive decay produces beta particles, posing significant environmental and public health risks, especially in the context of nuclear waste disposal. Recently, ion exchange has emerged as one of the most effective methodologies to deal with this challenge. Consequently, ion-exchange materials have become a hot topic in contemporary research. This review summarizes the latest advancements in the removal of critical radioactive ions, particularly Sr2+, using ion-exchange materials. It provides a comprehensive overview of the structures and properties of various ion-exchange materials, explaining their ion-exchange characteristics and exploring the complex relationship between structure and performance. Key considerations discussed include identifying cations that are most amenable to exchange within interlayer channels, evaluating the impact of channel dimensions on material efficiency, and strategies to enhance the ion-exchange capabilities of intercalation compounds. These factors are essential for achieving high selectivity and rapid adsorption kinetics in ion-exchange processes for Sr2+.
Collapse
Affiliation(s)
- Yucheng Hao
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei, 230000, China
| | - Cheng Hou
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei, 230000, China
| | - Changlin Chen
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei, 230000, China
| | - Hansong Zhou
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei, 230000, China
| | - Yinan Liu
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei, 230000, China
| | - Yuan Lin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Haijian Li
- National Key Lab of Science and Technology on Combustion and Explosion, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Kunhong Hu
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei, 230000, China
| |
Collapse
|
3
|
Wang YN, Wu JT, Li BH, Yang Y, Li J, Zhang B. Ultrafast and Highly Selective Sequestration of Radioactive Barium Ions by a Layered Thiostannate. Inorg Chem 2024; 63:20664-20674. [PMID: 39428638 DOI: 10.1021/acs.inorgchem.4c03299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
As a simulant of hazardous 226Ra2+, the simultaneously selective and rapid elimination of radioactive 133Ba2+ ions from geothermal water is necessary but still challenging. In this paper, we demonstrated the usability of a layered thiostannate with facile synthesis and inexpensive cost, namely, K2xSn4-xS8-x (KTS-3, x = 0.65-1), for the remediation of radioactive 133Ba2+ in multiple conditions, including sorption isotherm, kinetics, and the influences of competitive inorganic/organic ions, pH values, and dosages. KTS-3 has a strong barium uptake ability (171.3 mg/g) and an ultrafast adsorption kinetics (about 2 min). Impressively, it can achieve a high preference for barium regardless of the excessive interference ions (Na+, K+, Mg2+, Ca2+, and humic acid) and acidic/alkaline environments, with the largest distribution coefficient Kd value reaching 6.89 × 105 mL/g. Also, the Ba2+-laden products can be easily eluted by a concentrated KCl solution, and its adsorption performances for barium resist well even after five consecutive cycles. In addition, owing to the regular appearance and excellent mechanical strength, the prepared KTS-3/PAN (PAN = polyacrylonitrile) granule displays a good removal efficiency in the flowing ion-exchange column. These advantages mentioned above render it very promising for the effective and efficient cleanup of radioactive 133Ba2+-contaminated wastewater.
Collapse
Affiliation(s)
- Ya-Ning Wang
- Department of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, Liaocheng, China
| | - Jin-Ting Wu
- Department of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, Liaocheng, China
| | - Bao-Han Li
- Department of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, Liaocheng, China
| | - Yan Yang
- Department of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, Liaocheng, China
| | - Jun Li
- Department of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, Liaocheng, China
| | - Bo Zhang
- Department of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, Liaocheng, China
| |
Collapse
|
4
|
Peng Y, Zhu P, Zou Y, Gao Q, Xiong S, Liang B, Xiao B. Overview of Functionalized Porous Materials for Rare-Earth Element Separation and Recovery. Molecules 2024; 29:2824. [PMID: 38930888 PMCID: PMC11206383 DOI: 10.3390/molecules29122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
The exceptional photoelectromagnetic characteristics of rare-earth elements contribute significantly to their indispensable position in the high-tech industry. The exponential expansion of the demand for high-purity rare earth and related compounds can be attributed to the swift advancement of contemporary technology. Nevertheless, rare-earth elements are finite and limited resources, and their excessive mining unavoidably results in resource depletion and environmental degradation. Hence, it is crucial to establish a highly effective approach for the extraction and reclamation of rare-earth elements. Adsorption is regarded as a promising technique for the recovery of rare-earth elements owing to its simplicity, environmentally friendly nature, and cost-effectiveness. The efficacy of adsorption is contingent upon the performance characteristics of the adsorbent material. Presently, there is a prevalent utilization of porous adsorbent materials with substantial specific surface areas and plentiful surface functional groups in the realm of selectively separating and recovering rare-earth elements. This paper presents a thorough examination of porous inorganic carbon materials, porous inorganic silicon materials, porous organic polymers, and metal-organic framework materials. The adsorption performance and processes for rare-earth elements are the focal points of discussion about these materials. Furthermore, this work investigates the potential applications of porous materials in the domain of the adsorption of rare-earth elements.
Collapse
Affiliation(s)
- Yong Peng
- Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (Y.P.); (P.Z.); (Y.Z.); (Q.G.); (B.L.)
| | - Pingxin Zhu
- Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (Y.P.); (P.Z.); (Y.Z.); (Q.G.); (B.L.)
| | - Yin Zou
- Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (Y.P.); (P.Z.); (Y.Z.); (Q.G.); (B.L.)
| | - Qingyi Gao
- Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (Y.P.); (P.Z.); (Y.Z.); (Q.G.); (B.L.)
| | - Shaohui Xiong
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Binjun Liang
- Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (Y.P.); (P.Z.); (Y.Z.); (Q.G.); (B.L.)
| | - Bin Xiao
- Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (Y.P.); (P.Z.); (Y.Z.); (Q.G.); (B.L.)
- Key Laboratory of Ionic Rare Earth Resources and Environment, Ministry of Natural Resources of the People’s Republic of China, Jiangxi College of Applied Technology, Ganzhou 341000, China
| |
Collapse
|
5
|
Wang J, Zhang J, Ni S, Xing H, Meng Q, Bian Y, Xu Z, Rong M, Liu H, Yang L. Cation-Intercalated Lamellar MoS 2 Adsorbent Enables Highly Selective Capture of Cesium. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49095-49106. [PMID: 37820001 DOI: 10.1021/acsami.3c08848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Highly selective capture of cesium (Cs+) from complex aqueous solutions has become increasingly important owing to its (133Cs) indispensable role in some cutting-edge technologies and the environmental mobility of radioactive nuclide (137Cs) from nuclear wastewater. Herein, we report the development of cation-intercalated lamellar MoS2 as an effective Cs+ adsorbent with the advantages of facile synthesis and highly tunable layer spacing. Two types of cations, including Na+ and NH4+, were employed for the intercalations between adjacent layers of MoS2. The results demonstrated that the adsorption capacity of the NH4+-intercalated material (M-NH4+, 134 mg/g) for Cs+ clearly outperformed the others due to higher loading percentages of cations and larger layer spacing. The cesium partition coefficients for M-NH4+ in the presence of 100-fold competing ions all exceed 1 × 103 mL/g. A simulated complex aqueous solution containing 15.37 mg/L Cs+ and highly excess of competing ions Li+, Na+, K+, Mg2+, and Ca2+ (20-306 times higher) was introduced to prove the practical application potential using our best-performing M-NH4+, showing a good to excellent partition ability of Cs+ among other cations, especially for Cs/K and Cs/Na with separation factors of 58 and 212, respectively. The adsorption and selectivity mechanisms were clearly elucidated using various advanced techniques, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. These results revealed that the good selectivity for Cs+ can be ascribed to the differences in Lewis acidities, hydration energy, cation sizes, and in particular, the divergence of coordination modes which was successfully achieved after tuning the layer distance via the cation intercalation strategy. In addition, the material has fast kinetics (<30 min), wide range of pH tolerance (4-10), and good reusability. Overall, our studies point out that the tunable lamellar MoS2-based materials are promising adsorbents for Cs+ capture and separation.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianfeng Zhang
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shan Ni
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huifang Xing
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qiyu Meng
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yangyang Bian
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zihao Xu
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Meng Rong
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huizhou Liu
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Liangrong Yang
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
6
|
Xiao Z, Li DB, Zhang LG, Wang HR, Qin JH, Yang XG, Wu YP, Ma LF, Li DS. Dimension-dependent fluorescence emission and photoelectric performances of a 3D pyrene-based metal−organic framework. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
A crystalline organic hybrid indium antimony sulfide for high performance lithium/sodium storage. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Yin Y, Wu L, Chen C, Zheng B, Xiong WW. A facile strategy for engineering heterostructures of Pd nanoparticle-loaded metal-organic framework nanosheets as active hydrogenation catalysts. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Two New Gallium(III)-Thioantimonates TM(tren)GaSbS4 (TM = Mn, Fe): Syntheses, Crystal Structure and Properties. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Sun Y, Lu T, Pan Y, Shi M, Ding D, Ma Z, Liu J, Yuan Y, Fei L, Sun Y. Recovering rare earth elements via immobilized red algae from ammonium-rich wastewater. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 12:100204. [PMID: 36157340 PMCID: PMC9500351 DOI: 10.1016/j.ese.2022.100204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 05/31/2023]
Abstract
Biotreatment of acidic rare earth mining wastewater via acidophilic living organisms is a promising approach owing to their high tolerance to high concentrations of rare earth elements (REEs); however, simultaneous removal of both REEs and ammonium is generally hindered since most acidophilic organisms are positively charged. Accordingly, immobilization of acidophilic Galdieria sulphuraria (G. sulphuraria) by calcium alginate to improve its affinity to positively charged REEs has been used for simultaneous bioremoval of REEs and ammonium. The results indicate that 97.19%, 96.19%, and 98.87% of La, Y, and Sm, respectively, are removed by G. sulphuraria beads (GS-BDs). The adsorption of REEs by calcium alginate beads (BDs) and GS-BDs is well fitted by both pseudo first-order (PFO) and pseudo second-order (PSO) kinetic models, implying that adsorption of REEs involves both physical adsorption caused by affinity of functional groups such as -COO- and -OH and chemical adsorption based on ion exchange of Ca2+ with REEs. Notably, GS-BDs exhibit high tolerance to La, Y, and Sm with maximum removal efficiencies of 97.9%, 96.6%, and 99.1%, respectively. Furthermore, the ammonium removal efficiency of GS-BDs is higher than that of free G. sulphuraria cells at an initial ammonium concentration of 100 mg L-1, while the efficiency decreases when initial concentration of ammonium is higher than 150 mg L-1. Last, small size of GS-BDs favors ammonium removal because of their lower mass transfer resistance. This study achieves simultaneous removal of REEs and ammonium from acidic mining drainage, providing a potential strategy for biotreatment of REE tailing wastewater.
Collapse
Affiliation(s)
- Yabo Sun
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, PR China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, Anhui, 230601, PR China
| | - Tao Lu
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Yali Pan
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Menghan Shi
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Dan Ding
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Zhiwen Ma
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Jiuyi Liu
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Yupeng Yuan
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Ling Fei
- Chemical Engineering Department, University of Louisiana at Lafayette, Lafayette, LA, 70504, United States
| | - Yingqiang Sun
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, PR China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, Anhui, 230601, PR China
| |
Collapse
|
11
|
Bao YL, Zheng JY, Zheng HP, Qi GD, An JR, Wu YP, Liu YL, Dong WW, Zhao J, Li DS. Cu-MOF@PVP/PVDF hybrid composites as tunable proton-conducting materials. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Solvothermal syntheses, characterizations and photocatalytic properties of two copper-rich thiostannates. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|