1
|
Li X, Gao X, Yao D, Chen J, Lu C, Pang X. Flexible Sensors with a Multilayer Interlaced Tunnel Architecture for Distinguishing Different Strains. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38044869 DOI: 10.1021/acsami.3c14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The diversity of body joints and the complexity of joint motions cause flexible strain sensors to undergo complex strains such as stretching, compression, bending, and extrusion, which results in sensors that do not recognize different strains, facing great challenges in detecting the true motion characteristics of joints. Here, the monitoring of body joints' real motion characteristics has been realized by the sensor that can output response signals with different resistance trends for different strains. The sensor prepared by the sacrificial template method is characterized by a multilayered interlaced tunnel architecture and carbon black embedded in the inner wall of the tunnel. Stretching, compressive, and bending strains result in increasing, decreasing, and increasing resistance, followed by a decrease in resistance of the sensor, respectively. The sensor can still output distinguishable response signals, even in the presence of complex strains induced by squeezing. Low strain detection limits (0.03%) and wide detection ranges (>600%) are achieved due to the localized strain enhancement caused by the unique structure. The sensor can detect the motion characteristics of different joints in flexion-extension, abduction-adduction, and internal-external rotation, which, in turn, can be used for real-time monitoring of complex joint motions involved in limb rehabilitation. In addition, the sensor recognizes the 26 letters of the alphabet represented by sign language gestures. The above studies demonstrate the potential application of our prepared sensors in flexible, wearable devices.
Collapse
Affiliation(s)
- Xueyuan Li
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Xiping Gao
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Dahu Yao
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Jing Chen
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Chang Lu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Xinchang Pang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| |
Collapse
|
2
|
Hu T, Pan T, Guo D, Xiao Y, Li F, Gao M, Huang Z, Zhu J, Cheng T, Lin Y. Omnidirectional Configuration of Stretchable Strain Sensor Enabled by the Strain Engineering with Chiral Auxetic Metamaterial. ACS NANO 2023; 17:22035-22045. [PMID: 37844133 DOI: 10.1021/acsnano.3c08624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
An electromechanical interface plays a pivotal role in determining the performance of a stretchable strain sensor. The intrinsic mechanical property of the elastomer substrate prevents the efficient modulation of the electromechanical interface, which limits the further evolution of a stretchable strain sensor. In this study, a chiral auxetic metamaterial (CAM) is incorporated into the elastomer substrate of a stretchable strain sensor to override the deformation behavior of the pristine device and regulate the device performance. The tunable isotropic Poisson's ratio (from 0.37 to -0.25) achieved by the combination of CAM and elastomer substrate endows the stretchable strain sensor with significantly enhanced sensitivity (53-fold improvement) and excellent omnidirectional sensing ability. The regulation mechanism associated with crack propagation on the deformed substrate is also revealed with finite element simulations and experiments. The demonstration of on-body monitoring of human physiological signals and a smart training assistant for trampoline gymnastics with the CAM-incorporated strain sensor further illustrates the benefits of omnidirectionally enhanced performance.
Collapse
Affiliation(s)
- Taiqi Hu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
- School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Taisong Pan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
- Research Centre for Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, People's Republic of China
| | - Dengji Guo
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Yang Xiao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Fan Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Min Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Zhenlong Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
- Research Centre for Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, People's Republic of China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Jia Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tiedong Cheng
- School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| |
Collapse
|